67 research outputs found
Diversity of Salmonella serotypes from humans, food, domestic animals and wildlife in New South Wales, Australia
Abstract Background Salmonella is an important human pathogen in Australia and annual case rates continue to increase. In addition to foodborne exposures, cases have been associated with animal and contaminated environment contact. However, routine surveillance in Australia has tended to focus on humans and food, with no reported attempts to collate and compare Salmonella data from a wider range of potential sources of exposure. Methods Salmonella data from humans, food, animals and environments were collated from a range of surveillance and diagnostic sources in New South Wales (NSW). Data were categorised to reflect one of 29 sample origins. Serotype diversity was described for each category, and the distribution of serotypes commonly isolated from humans was examined for each sample origin. The distribution of serotypes along the livestock-food-human continuum and at the companion animal-wildlife interface was also examined. Results In total, 49,872 Salmonella isolates were included in this analysis, comprising 325 serotypes. The vast majority of these isolates were from humans (n = 38,106). Overall S. Typhimurium was the most frequently isolated serotype and was isolated from all sample categories except natural environment and game meat. S. Enteriditis was not isolated from any livestock animal, however sporadic cases were documented in food, companion animals and a reptile. Many serotypes that were frequently isolated from livestock animals and associated food products were only rarely isolated from humans. In addition, a number of key human serotypes were only sporadically isolated from livestock and food products, suggesting alternative sources of infection. In particular, S. Paratyphi B Java and S. Wangata were more often isolated from wild animals. Finally, there was some overlap between serotypes in companion animals and wildlife, with cats in particular having a large number of serotypes in common with wild birds. Conclusions This is the most comprehensive description of Salmonella data from humans, food, livestock, wildlife, companion animals and various environments in Australia reported to date. Results confirm that livestock and food are important sources of salmonellosis in humans but that alternative sources - such as contact with wildlife and environments - warrant further investigation. Surveillance in NSW is largely human-focussed: major knowledge gaps exist regarding the diversity and frequency of serotypes in animals. More systematic surveillance of domestic animals and wildlife is needed to inform targeted control strategies and quantitative source attribution modelling in this state
Unraveling Mycobacterium tuberculosis genomic diversity and evolution in Lisbon, Portugal, a highly drug resistant setting.
BACKGROUND: Multidrug- (MDR) and extensively drug resistant (XDR) tuberculosis (TB) presents a challenge to disease control and elimination goals. In Lisbon, Portugal, specific and successful XDR-TB strains have been found in circulation for almost two decades. RESULTS: In the present study we have genotyped and sequenced the genomes of 56 Mycobacterium tuberculosis isolates recovered mostly from Lisbon. The genotyping data revealed three major clusters associated with MDR-TB, two of which are associated with XDR-TB. Whilst the genomic data contributed to elucidate the phylogenetic positioning of circulating MDR-TB strains, showing a high predominance of a single SNP cluster group 5. Furthermore, a genome-wide phylogeny analysis from these strains, together with 19 publicly available genomes of Mycobacterium tuberculosis clinical isolates, revealed two major clades responsible for M/XDR-TB in the region: Lisboa3 and Q1 (LAM).The data presented by this study yielded insights on microevolution and identification of novel compensatory mutations associated with rifampicin resistance in rpoB and rpoC. The screening for other structural variations revealed putative clade-defining variants. One deletion in PPE41, found among Lisboa3 isolates, is proposed to contribute to immune evasion and as a selective advantage. Insertion sequence (IS) mapping has also demonstrated the role of IS6110 as a major driver in mycobacterial evolution by affecting gene integrity and regulation. CONCLUSIONS: Globally, this study contributes with novel genome-wide phylogenetic data and has led to the identification of new genomic variants that support the notion of a growing genomic diversity facing both setting and host adaptation
The population structure of Vibrio cholerae from the Chandigarh Region of Northern India.
BACKGROUND: Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century. METHODOLOGY/PRINCIPAL FINDINGS: Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters. CONCLUSIONS/SIGNIFICANCE: The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates
Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance.
BACKGROUND: Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. METHODS: To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. RESULTS: The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. CONCLUSIONS: Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance mutations to improve the design of tuberculosis control measures, such as diagnostics, and inform patient management
Functional analysis of colonization factor antigen I positive enterotoxigenic Escherichia coli identifies genes implicated in survival in water and host colonization
Enterotoxigenic Escherichia coli (ETEC) expressing the colonization pili CFA/I are common causes of diarrhoeal infections in humans. Here, we use a combination of transposon mutagenesis and transcriptomic analysis to identify genes and pathways that contribute to ETEC persistence in water environments and colonization of a mammalian host. ETEC persisting in water exhibit a distinct RNA expression profile from those growing in richer media. Multiple pathways were identified that contribute to water survival, including lipopolysaccharide biosynthesis and stress response regulons. The analysis also indicated that ETEC growing in vivo in mice encounter a bottleneck driving down the diversity of colonizing ETEC populations
Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations.
Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains
Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences
Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing
Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy
Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species are tissue-dwelling Coccidia and members of the phylum Apicomplexa; they share many common features, but Neospora neither infects humans nor shares the same wide host range as Toxoplasma, rather it shows a striking preference for highly efficient vertical transmission in cattle. These species therefore provide a remarkable opportunity to investigate mechanisms of host restriction, transmission strategies, virulence and zoonotic potential. We sequenced the genome of N. caninum and transcriptomes of the invasive stage of both species, undertaking an extensive comparative genomics and transcriptomics analysis. We estimate that these organisms diverged from their common ancestor around 28 million years ago and find that both genomes and gene expression are remarkably conserved. However, in N. caninum we identified an unexpected expansion of surface antigen gene families and the divergence of secreted virulence factors, including rhoptry kinases. Specifically we show that the rhoptry kinase ROP18 is pseudogenised in N. caninum and that, as a possible consequence, Neospora is unable to phosphorylate host immunity-related GTPases, as Toxoplasma does. This defense strategy is thought to be key to virulence in Toxoplasma. We conclude that the ecological niches occupied by these species are influenced by a relatively small number of gene products which operate at the host-parasite interface and that the dominance of vertical transmission in N. caninum may be associated with the evolution of reduced virulence in this species
- …