188 research outputs found

    Fire-severity effects on plant-fungal interactions: implications for Alaskan treeline dynamics in a warming climate

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Understanding the complex mechanisms controlling treeline advance or retreat in the Arctic and Subarctic has important implications for projecting ecosystem response to climate change. Changes in landcover due to a treeline biome shift could alter climate feedbacks and ecosystem services such as wildlife and berry habitat. Major sources of uncertainty in predicting treeline advance or retreat are the controls over seedling establishment at treeline and in tundra. One often-overlooked yet physiologically important factor to seedling establishment is the symbiosis with ectomycorrhizal fungi (EMF), the obligate mycobionts of all boreal tree species. EMF provide soil nutrients and water to seedlings and protect against pathogens, enhancing their growth and reducing drought stress. The availability of these critical mycobionts may be limited across the forest-tundra ecotone and by disturbance events such as wildfire. Wildfires are the primary large-scale disturbance in Alaskan boreal forests and are increasingly prevalent in tundra and at treeline. Fire is the major driver of boreal tree seedling recruitment; however, fire also alters the community structure and reduces biomass of EMF, especially after high-severity fires. To investigate the potentially critical role of EMF in seedling establishment at and beyond current treeline in Alaska, I conducted two observational studies and one experimental study that address how fire-severity influences EMF community structure and plant-fungal interactions. These studies indicated that shrubs that survived and resprouted after fires at treeline and in tundra were a source of resilience for EMF diversity and function. Shrubs maintained latesuccessional stage EMF taxa, and the EMF taxa associated with shrubs at treeline were compatible with tree seedlings that naturally established after fire. Many of the EMF taxa that were shared by seedlings and shrubs were present across the low Arctic, suggesting that EMF compatible with boreal tree species are not limited within the predicted geographic range of treeline expansion. Additionally, I found that seedling growth was correlated with post-fire fungal inoculum. Seedling growth was promoted by EMF inoculum provided by resprouting shrubs after fire. However, when fungal inoculum lacked EMF in post-fire tundra soils, seedling biomass was related to the negative effect of soil pathogens and the positive influence of dark septate endophytes. Together these results illustrate the important role of resprouting tundra shrubs as fungal nurse plants for establishment of boreal tree species at and potentially beyond current treeline, and that biotic factors such as EMF-tree interactions are important to seedling performance. My results suggest that the inclusion of biotic effects, like plant-fungal interactions, in simulation models of treeline dynamics will improve the accuracy of predictions of forestation and associated landscape flammability with future warming in Alaska.Chapter 1: General introduction -- Chapter 2: Resilience of Arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs -- Chapter 3: Plant-fungal interactions after a novel disturbance in the Arctic: implications for shrub and tree migration -- Chapter 4: Shrub-ectomycorrhizal-seedling interactions facilitate tree establishment after wildfire at the Alaskan boreal treeline -- Chapter 5: General conclusions

    Variable retention harvesting influences belowground plant-fungal interactions of Nothofagus pumilio seedlings in forests of southern Patagonia

    Get PDF
    Background. The post-harvest recovery and sustained productivity of Nothofagus pumilio forests in Tierra del Fuego may be affected by the abundance and composition of ectomycorrhizal fungi (EMF). Timber harvesting alters EMF community structure in many managed forests, but the impacts of harvesting can vary with the management strategy. The implementation of variable retention (VR) management can maintain, increase, or decrease the diversity of many species, but the effects of VR on EMF in the forests of southern Patagonia have not been studied, nor has the role of EMF in the regeneration process of these forests. Methods. We evaluated the effects of VR management on the EMF community associated with N. pumilio seedlings. We quantified the abundance, composition, and diversity of EMF across aggregate (AR) and dispersed (DR) retention sites within VR managed areas, and compared them to primary forest (PF) unmanaged stands. EMF assemblage and taxonomic identities were determined by ITS-rDNA sequencing of individual root tips sampled from 280 seedlings across three landscape replicates. To better understand seedling performance, we tested the relationships between EMF colonization, EMF taxonomic composition, seedling biomass, and VR treatment. Results. The majority of EMF taxa were Basidiomycota belonging to the families Cortinariaceae (n = 29), Inocybaceae (n = 16), and Thelephoraceae (n = 8), which was in agreement with other studies of EMF diversity in Nothofagus forests. EMF richness and colonization was reduced in DR compared to AR and PF. Furthermore, EMF community composition was similar between AR and PF, but differed from the composition in DR. EMF community composition was correlated with seedling biomass and soil moisture. The presence of Peziza depressa was associated with higher seedling biomass and greater soil moisture, while Inocybe fibrillosibrunnea and Cortinarius amoenus were associated with reduced seedling biomass and lower soil moisture. Seedling biomass was more strongly related to retention type than EMF colonization, richness, or composition. Discussion. Our results demonstrate reduced EMF attributes and altered composition in VR treatments relative to PF stands, with stronger impacts in DR compared to AR. This suggests that VR has the potential to improve the conservation status of managed stands by supporting native EMF in AR. Our results also demonstrate the complex linkages between retention treatments, fungal community composition, and tree growth at individual and stand scales.Fil: Hewitt, Rebecca E.. University Of Alaska; Estados Unidos. Northern Arizona University; Estados UnidosFil: Taylor, Donald Lee. University of New Mexico; Estados Unidos. University Of Alaska; Estados UnidosFil: Hollingsworth, Teresa N.. Usda Forest Service. Pacific Northwest Research Station; Estados UnidosFil: Anderson, Christopher Brian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Universidad Nacional de Tierra del Fuego; ArgentinaFil: Martínez Pastur, Guillermo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentin

    Socioeconomic status, mental wellbeing and transition to secondary school: analysis of the School Health Research Network/Health Behaviour in School-aged Children survey in Wales

    Get PDF
    Young people’s wellbeing is often lowest where they assume a relatively low position within their school’s socioeconomic hierarchy, for example, among poorer children attending more affluent schools. Transition to secondary school is a period during which young people typically enter an environment which is more socio-economically diverse than their primary school. Young people joining a school with a higher socioeconomic status intake relative to their primary school may assume a relatively lowered position within their schools’ socioeconomic hierarchy, experiencing a detriment to their wellbeing as a consequence. This paper draws on data from 45,055 pupils in Years 7 and 8, from 193 secondary schools in Wales, who completed the 2017 Student Health Research Network (SHRN) Student Health and Wellbeing (SHW) Survey. Pupils reported which primary school they previously attended, and survey data on wellbeing were linked to publicly available data on the Free School Meal entitlement of schools attended. In cross-classified linear mixed-effects models, with primary and secondary school as levels, mental wellbeing varied significantly according to both primary and secondary school attended. A higher school-level deprivation was associated with worse mental wellbeing in both cases. Mental wellbeing was significantly predicted by the relative affluence of a child’s primary and secondary school, with movement to a secondary school of higher overall socioeconomic status associated with lowered wellbeing. These findings highlight transition to secondary school as a key point in which socioeconomic inequality in wellbeing ma

    Identifying "vital attributes" for assessing disturbance-recovery potential of seafloor communities

    Get PDF
    Despite a long history of disturbance–recovery research, we still lack a generalizable understanding of the attributes that drive community recovery potential in seafloor ecosystems. Marine soft‐sediment ecosystems encompass a range of heterogeneity from simple low‐diversity habitats with limited biogenic structure, to species‐rich systems with complex biogenic habitat structure. These differences in biological heterogeneity are a product of natural conditions and disturbance regimes. To search for unifying attributes, we explore whether a set of simple traits can characterize community disturbance–recovery potential using seafloor patch‐disturbance experiments conducted in two different soft‐sediment landscapes. The two landscapes represent two ends of a spectrum of landscape biotic heterogeneity in order to consider multi‐scale disturbance–recovery processes. We consider traits at different levels of biological organization, from the biological traits of individual species, to the traits of species at the landscape scale associated with their occurrence across the landscape and their ability to be dominant. We show that in a biotically heterogeneous landscape (Kawau Bay, New Zealand), seafloor community recovery is stochastic, there is high species turnover, and the landscape‐scale traits are good predictors of recovery. In contrast, in a biotically homogeneous landscape (Baltic Sea), the options for recovery are constrained, the recovery pathway is thus more deterministic and the scale of recovery traits important for determining recovery switches to the individual species biological traits within the disturbed patch. Our results imply that these simple, yet sophisticated, traits can be effectively used to characterize community recovery potential and highlight the role of landscapes in providing resilience to patch‐scale disturbances.Peer reviewe

    Phase Changes in Internally Mixed Maleic Acid/Ammonium Sulfate Aerosols

    Get PDF
    A temperature controlled flow tube system equipped with Fourier transform infrared (FTIR) detection of particle phase and relative humidity was used to measure the deliquescence and efflorescence of ammonium sulfate, maleic acid, and internally mixed maleic acid/ammonium sulfate particles. Our results indicate that maleic acid aerosols begin to take up water starting at a low relative humidity, ∼20%, and continue the constant uptake of water until the final deliquescence relative humidity (DRH), 89%, is reached. Internally mixed particles containing maleic acid and ammonium sulfate were found to deliquesce at a lower relative humidity (RH) than either of the pure species. Efflorescence studies indicated that while pure maleic acid particles crystallize at ∼18% RH, pure ammonium sulfate and all mixed aerosols effloresce at or just below 30% RH. Taken together, our results suggest that the presence of water-soluble organics internally mixed with ammonium sulfate aerosol could increase the range of conditions under which the aerosol is a solution

    Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes

    Get PDF
    Background & Aims: Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Methods: Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. Results: HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. Conclusions: HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes

    Social-ecological connections across land, water, and sea demand a reprioritization of environmental management

    Get PDF
    Despite many sectors of society striving for sustainability in environmental management, humans often fail to identify and act on the connections and processes responsible for social-ecological tipping points. Part of the problem is the fracturing of environmental management and social-ecological research into ecosystem domains (land, freshwater, and sea), each with different scales and resolution of data acquisition and distinct management approaches. We present a perspective on the social-ecological connections across ecosystem domains that emphasize the need for management reprioritization to effectively connect these domains. We identify critical nexus points related to the drivers of tipping points, scales of governance, and the spatial and temporal dimensions of social-ecological processes. We combine real-world examples and a simple dynamic model to illustrate the implications of slow management responses to environmental impacts that traverse ecosystem domains. We end with guidance on management and research opportunities that arise from this cross-domain lens to foster greater opportunity to achieve environmental and sustainability goals.Peer reviewe

    Work-family life courses and metabolic markers in mid-life: evidence from the British National Child Development Study

    Get PDF
    Background Previous studies have found generally better health among those who combine employment and family responsibilities; however, most research excludes men, and relies on subjective measures of health and information on work and family activities from only 1 or 2 time points in the life course. This study investigated associations between work-family life course types (LCTs) and markers of metabolic risk in a British birth cohort study. Methods Multichannel sequence analysis was used to generate work-family LCTs, combining annual information on work, partnership and parenthood between 16 and 42 years for men and women in the British National Child Development Study (NCDS, followed since their birth in 1958). Associations between work-family LCTs and metabolic risk factors in mid-life (age 44-45) were tested using multivariate linear regression in multiply imputed data. Results Life courses characterised by earlier transitions into parenthood were associated with significantly increased metabolic risk, regardless of attachment to paid work or marital stability over the life course. These associations were only partially attenuated by educational qualifications, early life circumstances and adult mediators. The positive association between weak labour markets ties and metabolic risk was weaker than might be expected from previous studies. Associations between work-family LCTs and metabolic risk factors did not differ significantly by gender. Conclusions Earlier transitions to parenthood are linked to metabolic risk in mid-life

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA
    corecore