668 research outputs found
XPS study of the influence of temperature on ZnDTP tribofilm composition
Antiwear additives, such as zinc dialkyldithiophosphate (ZnDTP), find application in many different industrial sectors. Although it is understood that certain ZnDTP concentrations need to be used to achieve an effective antiwear performance, there has been very little work published concerning the effect of temperature on the interactions of the additive and its adsorption mechanism on steel. In this article, 100Cr6 (52100) steel ball-on-disc experiments under solutions of zinc dialkyldithiophosphate (ZnDTP) in poly-α-olefin (PAO) were performed at different temperatures, ranging from 25 to 180°C. The discs were analysed after the experiments by means of small-area, imaging and angle-resolved X-ray photoelectron spectroscopy (XPS). The composition of the reaction film was found to change as a function of the applied temperature and also to vary within the film as a function of depth: Longer polyphosphate chains were found at higher temperatures as well as towards the outer part of the reaction fil
Data-driven parameterized model order reduction using z-domain multivariate orthonormal vector fitting technique
Del Pezzo surfaces with 1/3(1,1) points
We classify del Pezzo surfaces with 1/3(1,1) points in 29 qG-deformation
families grouped into six unprojection cascades (this overlaps with work of
Fujita and Yasutake), we tabulate their biregular invariants, we give good
model constructions for surfaces in all families as degeneracy loci in rep
quotient varieties and we prove that precisely 26 families admit
qG-degenerations to toric surfaces. This work is part of a program to study
mirror symmetry for orbifold del Pezzo surfaces.Comment: 42 pages. v2: model construction added of last remaining surface,
minor corrections, minor changes to presentation, references adde
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Polyelectrolyte multilayer formation: electrostatics and short-range interactions
We investigate the phenomenon of multilayer formation via layer-by-layer
deposition of alternating charge polyelectrolytes. Using mean-field theory, we
find that a strong short-range attraction between the two types of polymer
chains is essential for the formation of multilayers. The dependence of the
required short-range attraction on the polymer charge fraction and salt
concentration is calculated. For weak short-range attraction between any two
adjacent layers, the adsorbed amount (per added layer) decays as the distance
from the surface increases, until the chains stop adsorbing altogether. For
strong short-range attraction, the adsorbed amount per layer increases after an
initial decrease, and finally it stabilizes in the form of a polyelectrolyte
multilayer that can be repeated many times.Comment: 8 pages, 7 figure
Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study
The last decade has seen an explosion in models that describe phenomena in
systems medicine. Such models are especially useful for studying signaling
pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to
showcase current mathematical and statistical techniques that enable modelers
to gain insight into (models of) gene regulation, and generate testable
predictions. We introduce a range of modeling frameworks, but focus on ordinary
differential equation (ODE) models since they remain the most widely used
approach in systems biology and medicine and continue to offer great potential.
We present methods for the analysis of a single model, comprising applications
of standard dynamical systems approaches such as nondimensionalization, steady
state, asymptotic and sensitivity analysis, and more recent statistical and
algebraic approaches to compare models with data. We present parameter
estimation and model comparison techniques, focusing on Bayesian analysis and
coplanarity via algebraic geometry. Our intention is that this (non exhaustive)
review may serve as a useful starting point for the analysis of models in
systems medicine.Comment: Submitted to 'Systems Medicine' as a book chapte
2,2':6',2''-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes
Nanophase-separated amphiphilic polymer co-networks are ideally suited as responsive membranes due to their stable co-continuous structure. Their functionalization with redox-responsive 2,2′:6′,2′′-terpyridine–metal complexes and light-responsive spiropyran derivatives leads to a novel material with tunable optical, redox and permeability properties. The versatility of the system in complexing various metal ions, such as cobalt or iron at different concentrations, results in a perfect monitoring over the degree of crosslinking of the hydrophilic poly(2-hydroxyethyl acrylate) channels. The reversibility of the complexation, the redox state of the metal and the isomerization to the merocyanine form upon UV illumination was evidenced by cyclic voltammetry, UV-Vis and permeability measurements under sequential conditions. Thus, the membrane provides light and redox addressable functionalities due to its adjustable and mechanically stable hydrogel network
Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation
Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas
30 years of collaboration
We highlight some of the most important cornerstones of the long standing and very fruitful collaboration of the Austrian Diophantine Number Theory research group and the Number Theory and Cryptography School of Debrecen. However, we do not plan to be complete in any sense but give some interesting data and selected results that we find particularly nice. At the end we focus on two topics in more details, namely a problem that origins from a conjecture of Rényi and Erdős (on the number of terms of the square of a polynomial) and another one that origins from a question of Zelinsky (on the unit sum number problem). This paper evolved from a plenary invited talk that the authors gaveat the Joint Austrian-Hungarian Mathematical Conference 2015, August 25-27, 2015 in Győr (Hungary)
- …
