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Abstract

We study a range of counterparts of the single machine scheduling problem with the
maximum lateness criterion that arise in the context of inverse optimization. While in
the forward scheduling problem all parameters are given and the objective is to find
the optimal job sequence for which the value of the maximum lateness is minimum, in
inverse scheduling the exact values of processing times or due dates are unknown and
they should be determined so that a pre-specified solution becomes optimal. We perform
a fairly complete classification of the corresponding inverse models under different types
of norms that measure the deviation of adjusted parameters from their given estimates.

1 Introduction

In recent years, the interest in inverse optimization has increased dramatically. Unlike tra-
ditional optimization models for which all parameters are given and the objective is to find
the best solution that satisfies specific constraints, in inverse optimization the exact values
of some parameters are unknown and they should be determined so that a pre-specified
solution becomes optimal. While inverse optimization has attracted much attention of re-
searchers in different areas of combinatorial optimization, scheduling problems have not yet
been studied in terms of inverse optimization (see, e.g., surveys [1, 5]). In this paper, we
study the inverse counterparts of the single machine scheduling problem 1||Lyax with the
maximum lateness criterion.

In the forward scheduling problem 1||Lyax, & set of jobs N = {1,2,...,n} should be
processed by a single machine without preemption. All jobs are available at time 0. The
processing time of a job j € N is given by p; and it should be completed by a given due
date d;. We denote a due date vector (di,...,d,) by d. A schedule is uniquely defined
by a job permutation 7, which induces completion times C; (1) for the jobs scheduled one
after another without idle time. For a schedule given by permutation 7, the lateness of job
j is determined as

Lj(m,d) = Cj () —d,

and the overall performance of a schedule is measured in terms of the maximum lateness:

Lax (m,d) = L;(m,d)}.

(m,d) = max{L; (r,d)}

The objective of the forward problem 1||Lmax is to find a permutation 7* for which
Lyax (7, d) achieves its minimum value:

Lax (m*,d) < Liax (7,d)  for any job permutation 7.

In what follows we do not use m and d in the notation if no ambiguity arises.

In the inverse scheduling problem, the typical processing times p; and due dates d;
are given together with a target job sequence m. Permutation 7 may not be optimal for
the given values of p; and d;, j € N. The objective is to modify the parameters within
certain limits to be as close to the typical ones as possible so that the target job sequence
becomes optimal. In what follows we assume that the target job permutation is given by
m = (1,2,...,n); otherwise the jobs can be renumbered. If processing times are fixed and
due dates are adjustable, then the inverse problem is denoted by 1|adjustable d;, 7|Lmax. In



this problem, for each job ¢ € N its typical due date d; is given together with its variability
interval [dj,aj], d; € [dj,zlj]. The adjusted due dates d = ((ﬁ,gl\g,...,gn> should be

selected within given boundaries C/l; € [dj, Ej], j € N, so that the deviation d— dH from
the original due dates is minimum and the target job permutation 7 is optimal:

min Hd — dH
s.t.  Lmax (7r, a) < Lpax (a, a) for any job permutation o,

The typical norms that are considered in inverse optimization have different costs for
positive and negative deviations:

¢1 (Manhattan): d—d =

n

{aj max {JJ — dj,O} + 3 max {dj — ij,OH ;

Las o
o (Buclidean):  [[d—d], = \/ji [aj (max {d; - dj,o})2 + 5 (max {d; - c@,o}ﬂ,
b T = e, ogmes 4 =0} + 8y mex{dy = 5,0}

% (Hamming):  |[d—d ;B _ é [assen (max {d; — d;,0}) + Bsem (max {a; - d;,0})],

7=1

/%% (Hamming): d—d za:/s = max [ajsgn (max {(fj —dj, 0}) + Bjsgn (max {dj - cjj, 0})} .
Here all costs a; and 3; are non-negative. Observe that we consider the generalized form
of the two Hamming norms; the inverse optimization problems with the symmetric versions
of these two norms when «a; = 3; are studied in [4, 11].

In addition to the inverse problem 1|adjustable d;, 7|Lmax, we introduce a reverse
problem following the classification due to Heuberger [5]. In a reverse problem, instead of
a target permutation 7, a target value L* of the objective function Ly is given and the
due dates should be adjusted to achieve that value:

min Ha — dH
s.t. Lmax (U, a) < L*, for some permutation o,
d; < dj < dj, jEN.

We denote this problem by 1|adjustable d;, L*|Lmax-

The inverse and reverse problems formulated above consider fixed processing times
and adjustable due dates. Similar formulations can be introduced for fixed due dates and
adjustable processing times p; which should be selected within given boundaries p. < p; <

Pj» j € N, so that the deviation from the original processing times ||p — p|| is minimum.
In the corresponding notation, we simply replace “adjustable d;” by “adjustable p;”.



We describe the possible scenarios that involve inverse and reverse scheduling. In real
life situations, the interests of customers and producers are often in conflict. Inverse and
reverse models may be used as a negotiation tool to resolve such conflicts.

In a scenario corresponding to the inverse scheduling problem with adjustable processing
times, a producer may have a preferred job sequence m predetermined by some estimates
of processing times and due dates and by technical restrictions. If the actual values of
parameters appear to be quite different from the estimates so that the customers’ due
dates cannot be met if the preferred production sequence is used, then the producer may
identify a few jobs that can be produced faster at an additional cost giving an opportunity
to complete all jobs in time following the fixed sequence. Adjusted processing times must
be such that 7 is the best possible sequence for the producer and that the customers’ due
dates are respected.

In a scenario corresponding to the reverse scheduling problem with adjustable due dates,
the producer aims to complete the jobs either on time or within an admittable limit L*
from the due dates, but he is not restricted by some preferred job sequences. If adhering
to the claimed quality of service measured by L* is not possible, the producer may offer
the customers some compensation to override their due dates slightly, so that the claimed
quality of service is achieved for the modified due dates. The bargained due dates must be
such that the quality level L* is met and the costs incurred are minimal.

In this paper, we consider the problems with adjustable due dates first and the coun-
terparts with adjustable processing times next.

2 Preliminaries

It is known [2, 7] that the forward problem 1||Lyax can be solved by sequencing the jobs in
non-decreasing order of their due dates, which is often called the earliest due date (EDD)
order. The EDD order is sufficient but not necessary for a job permutation to be optimal.

The necessary and sufficient conditions for optimality of a given job sequence for problem
1|| Lmax were formulated and proved by Lin and Wang [10]. These conditions are essentially
used in solving the inverse and reverse problem in the subsequent sections.

Theorem 1 The job sequence m = (1,2,...,n) is optimal for problem 1||Lyax if and only
if there exists a job k such that the following two conditions are satisfied:

Cp—dp>2Cj—dj  forl1<j<mn, (1)

djgdk fOT’lSjgk—l. (2)

Observe that there may exist several jobs satisfying condition (1) with the same value
Cx — di. In what follows we call the job(s) satisfying condition (1) critical for d and .

3 Adjustable Due Dates

In this section we assume that the processing times p; are fixed for all jobs j € N while the
due dates d; should be adjusted to guarantee that the target job sequence 7 = (1,2,...,n)
is optimal or a target value L* of the maximum lateness L.y is achieved. The inverse



problem with the target permutation 7 is considered first (Section 3.1) and the reverse
problem with the target objective value L* next (Section 3.2).

3.1 Inverse Problem 1|adjustable d;, 7|Lmax

The objective of the inverse problem 1||Lpax is to find the adjusted due dates d within the
given boundaries c@ € [glj, Ej], J € N, so that the deviation H& — dH from the original due
dates is minimum and the target job permutation m = (1,2,...,n) is optimal.

First we prove that a job that is critical for the initial due dates d remains critical for
the optimum adjusted due dates d. Then we demonstrate how the optimum adjusted due
dates d = (c?l, e ,c?n) can be found.

Lemma 1 Let h be a critical job for initial due dates d and a target job sequence m =
(1,2,...,n). If the inverse problem 1|adjustable d;, 7|Lmax is feasible, then there exists an
optimal solutzon d such that the same job h is critical for the adjusted due dates d and job
sequence T.

Observe that problem 1|adjustable d;, m|Lmax is infeasible if the due dates cannot be
adjusted within their boundaries to make permutaion 7w optimal.
The proof of the lemma appears in the Appendix.

It follows from Lemma 1 that in order to find the optimum adjusted due dates d we can
limit our consideration to a class of schedules with a fixed critical job h, which is defined
as a critical job for the initial due dates d.

If conditions (1)-(2) of Theorem 1 are satisfied for the target permutation 7 with the
critical job h for initial due dates d, then no further action is required; the current schedule is

optimal and the deviation Hd dH is 0. Otherwise we consider different values dh € [dh, dh]

and define the adjusted due dates d for all other jobs 7 € N\ {h} depending on dh

In order to derive the formulas for due date adjustments, we split the interval [dh,gh]
into subintervals in such a way that in each subinterval the same subset of jobs is subject
to adjustment. Considering the subintervals one by one we perform parametric analysis
of the whole interval [dh, dh] In each subinterval, we find an optimum due date dh and

corresponding due dates dj for 7 € N\ {h} to ensure that the necessary and sufficient con-
ditions from Theorem 1 are satisfied and the deviation ‘ d-— d‘ is minimum. The solution
to the problem is found by considering the solutions for all subintervals and selecting the
one with the smallest deviation Ha — dH

The interval [dh,gh] is split by the different values from {Cj, — L1, C}, — La,. .., C}, —
Ln,} U{d1,da,...,dy} that belong to that interval. Introduce the ordered sequence of the

above values: B
dh:tk1<tk2<"'<tk¢z:dh' (3)

Observe that for job h the two valugs Cy — Ly, and dj, coincide, so that z <n -+ h — 1.
Suppose the adjusted due date dj, belongs to the subinterval [tkg,tkﬁl], 1<g<z—1.
Consider condition (1) of Theorem 1. For any job j € N\ {h} the value Cj, — L; satisfies



one of the conditions: R
Ch—Lj <ty, <dj (4)

or .
Ch—Lj > tg,,, >dn. (5)

The jobs j € N\ {h} that satisfy (4) violate condition (1) of Theorem 1 for any d €
[tk tk,,. | and those that satisfy (5) do not.

Consider now condition (2) of Theorem 1. For any job j € {1,2,...,h — 1} the value
d; satisfies one of the conditions:

dj < ty, <dy, (6)

or R
dj > tg,,, > dp. (7)
The jobs that satisfy (6) do not violate condition (2) of Theorem 1 and those that satisfy

(7) violate it for any dy € [tg,, tr,,, |-

Thus we can define two subsets of jobs which due dates should be adjusted in order to
achieve the necessary and sufficient conditions of Theorem 1 for the target permutation 7
with the critical job h and dp € [tkg,tkg+1]:

Ug={u|uweN\{h} and C,— L, <ty,} — the jobs that violate condition (1),
Vo={v]ve{l,...,h—1} and d, > ty,,,} — the jobs that violate condition (2).

Clearly the due dates of the jobs from U, should be increased, while those of the jobs from
Vy should be decreased.
Observe that U, NV, = (: for any job v € V,

C/U < Ch,

and

d’U 2 tkg+1 > tkg,

so that
L,=C,—d, <Ch—tkg

and condition (4) which characterizes U, does not hold.

The subsets U, and V, defined for the subinterval [tkg,tkg +1] may differ from Uyqq
and V11 defined for the next subinterval [tg, ., %k, ,]. In particular, for two consecutive
intervals U, C Ugy1 and V; O V1.

We start the solution process with the adjusted due date c?h belonging to the leftmost
interval [k, , tx,] and then proceed with next intervals [tkg, Uk, +1]’ g=2,3...,z, considering
them one by one. For each interval [tkg,tkg +1] we denote the adjusted due dates of the jobs
from U, and Vj by

c?u:du-i-:cu, u € Uy,
dy =dy —yy, vEV,



and define the associated problem as follows:

min F (cfh, X, y)

s.t. tkg <dp < tkg+1,

Cy — (dy +A:cu) < Cy —c?h, u € Uy, (8)
dv_yvgdha UE‘/g,
nguéau_dua UEUg,
OSyUde—dU, Ue‘/g;

where the objective function F'is of the form:

( ~
ap (dh - dh) + > owTut Y By for ¢ o g norm,
uclUy veEV,
~ 2
ay, (dh - dh) + 3 a2+ Y Buy2 for 45 o g norm,
uclUy veEVy
F (c?h,x,y) =< max {ah (gh — dh> , zré%x QLo f}rg%/X vav} for £,q,3 nOrM,
g g
apsgn (dh — dh) + > aysgnz, + Y. B,sgny, for 0% 5 norm,
u€ly VEV, o
max {ahsgn (c?h — dh) ,Sgac QU SENTy, 5}%&%/); Bvsgnyv} for /7% 5 norm.

\

The cost of these adjustments is minimum if conditions (1) and (2) hold as equalities
for the adjusted due dates:

Cu—(duﬁ-xu):C'h—cTh, u e Uy,
dv_yv:&\h, 'UE‘/g.

Finding the expressions for , and y, from the above conditions and substituting them in
(8) we obtain a problem with one variable dp:

min F (c?h
~ . - : (9)
s.t. max tkg’gé%}g{ {Auh},gée% {glv}} <d; < min {t’“g“’fel%ﬂ {Auh} ,11)1611‘2 {dv}} ,
where
ap (C/Z\h - dh) + > o (f/i\h - Auh) + > B, <—th + dv) for 41 0,3,
uclUy vEV,
~ 2 - 2 ~ 2
ap, (dh — dh) + > (dh - Auh> + > B, (—dh + dv) for 5.4,
u€Uy veEVy

F(dn) = ¢ max {ah ((Yh — dh) , TNAX Qi (gh — Auh> ,max 3, (—cjh + dv)} for looa.3,
u€lUy vEV,

)
ap+ Y, ay+ Y. B, for 03 ,, 5
u€Uy veEVy
max < u,, max o, max 3 for £558x
\ { "ue g u,veVg U} H,a,8



and the constants Ay, and A, are defined for all u € Uy as

Auh = du - Cu +Ch>

A = dy— Cy+Ch.
Observe that in the case of the Hamming norm £ 5 and £ 5, function F (c?h> is

constant and does not depend on (Yh.

The constraint of problem (9) may be infeasible with the left-hand-side larger than
the right-hand-side. In such a case no adjusted value dj € [tkg,tkg +1] exists such that
permutation 7 is optimal. If this happens for all intervals [tkg,tkgﬂ], g=1,2....,z—1,
then the inverse problem 1|adjustable dj, m|Lmax does not have a solution. For example,
if the due dates of all jobs are fixed, i.e., d; = Ej, J € N, and a given permutation 7 is not
optimal, then no adjustments are possible and no solution to inverse problem exists.

_ We estimate the time complexity of the described approach. For the first problem with
dp, € [ty ,tr,) the sets Vi and U; can be constructed in O (n) time. The objective function

F (c/l\h) and the box constraint can be obtained in O (n) time.

Consider the transition from the problem with cjh € [tkg_l,tkg] to the problem with
c?h € [tkg,tkg+1], 2 < g < z—1. Each additional job that joins the U-set and each
redundant job that is removed from the V-set can be found in O (1) time and the new
formulation (9) is solvable in O (1) time for any type of the norm. Repeating this process,
we can find the optimal adjusted due date dj, in O (n) time since z < n+h —1. Taking into
account that the ordered sequence (3) can be found in O (nlogn) time, the overall time
complexity of solving the inverse problem is O (nlogn) for any type of the norm.

3.2 Reverse Problem 1|adjustable d;, L*|Lax

Suppose the target value L* of the maximum lateness L.y is given and the objective is
to find the adjusted due dates d;, d; € [d;, Ej], such that Hd - dH is minimum and the

target value L* is achieved.

Since the smallest value of Lyax can be guaranteed by sequencing the jobs in the earliest
due date order (EDD) [7], we can limit our search to the class of EDD-schedules.

We start with the EDD-schedule with the original due dates. If the value of Lyax for it
is no larger than L*, then no further action is required. Otherwise the due dates of some
jobs should be increased.

Let H = {h;} be the set of critical jobs (the notion of a critical job was introduced in
Section 2) and L be the value of the maximum lateness, L = Lyax. If L > L*, then the
due dates of the jobs from H should be increased. Clearly, the increment amount should
be the same for all jobs from H:

dj=d;j+z, x>0, jeH,
and the due date boundaries should be observed:

z < min{(/i\- —d-} .
—jen U7 Y

First we discuss how the ties should be broken in the EDD-sequence if several jobs have
equal due dates. If none of them is critical, then their order is immaterial. Otherwise,



only the last job among those with equal due dates is critical and requires adjustment.
Depending on the type of the norm, the deviation Hd — dH is calculated by one of the
formulas:

> apx for 41 o g norm,
heH
3 apz? for ¢5 g norm,
R heH
Hd_dH ={ max{ap} xx for ls o norm,
heH E’ ’
> ay for ¢%; , 5 norm,
heH
max oy, for /52 , norm.
\ heH{ } Hyo,8

In the class of EDD-schedules, the value of Ha — dH is minimum for each of the above

norms, if the jobs with equal due dates are sequenced in non-increasing order of a;.

We introduce a notion of the main permutation. Permutation o is called the main
permutation if the jobs are sorted in non-decreasing order of d; and the jobs with equal
due dates are additionally sorted in non-increasing order of costs a;.

The due date adjustment of the critical jobs may violate the EDD order and/or new
critical jobs may appear. In order to maintain the main permutation o and keep track
of the critical jobs H, the due date adjustment should be performed iteratively. At each
iteration we assume that the jobs are numbered in accordance with the main permutation.
Increasing due date dp; of job h; € H may cause a structural change that corresponds to

one of the following three events. We assume that h; is the k-th job in permutation o, i.e.,

Event A: the due date of job o(k) reaches the due date of the next job o(k + 1) of the
main permutation;

Event B: a job j € N\'H becomes critical;
Event C: the target value L* of the maximum lateness is achieved;

Event D: the due date of job o(k) reaches its upper bound Eg(k).

It is straightforward to verify that increasing d, 1) by the amount

Toy = Ao(kt1) — do(k),
B
= L- C; — d;
Lo (k) jfenj\%\’%{ J it

or
D _
To(k) = Ao (k) = do(k)

leads to Event A, B, C or D, respectively.



The value of Limax decreases if the due dates of all jobs from H are increased by the
same amount x until the earliest event A, B, C or D occurs. Hence z is defined as

x = min Ugcl)m {dg(kH k)} L - Ienj\?\xH{C s —d;}, L—L", (10)

Jmin {do(r) — do) }

If Event A occurs and the due dates of jobs o(k) and o(k + 1) become equal, then
renumbering and updating the current permutation may be required so that the jobs with
equal due dates are sequenced in non-increasing order of «;. If Event B occurs, then the set
‘H should be updated. In both cases the current value L of the maximum lateness should
be decreased by x. Increasing the due dates of the set H continues iteratively until one
of the Events C or D occurs. In the case of Event C the target value L* is achieved; the
resulting solution is optimal since in each iteration the EDD permutation is considered and
among the jobs with equal due dates the one with the smallest value of «; is selected for
due date adjustment. In the case of Event D the due date of at least one critical job cannot
be increased any more so that the target value L* cannot be achieved.

The initial job sequence can be constructed in O (nlogn) time. In each iteration, the
adjustment amount x is calculated in O (n) time. Events A and B occur no more than n
times each, while Event C occurs once. Thus the overall time complexity of solving the
reverse problem is O (ng) Thus we have proved the following result.

Theorem 2 The reverse problem 1|adjustable d;, L*|Lmax is solvable in O (ng) time for
any time of the norm by decompressing all critical jobs iteratively by the same amount x
defined by (10). If no solution exists, then this can be verified also in O (n2) time using the
same approach.

4 Adjustable Processing Times

In this section we assume that the due dates d; are fixed for all jobs j € N while the
processing times p; should be adjusted to guarantee that the target job sequence m =
(1,2,...,n) is optimal or the target value L* is achieved.

4.1 Inverse Problem 1|adjustable p;, 7| Lmax

The objective of the inverse problem 1|adjustable p;, m|Lmax is to find the adjusted pro-

cessing times p within the given boundaries so that p; € [}_Dj, ﬁ]}, j € N, the deviation

from the original processing times ||p — p|| is minimum and the target job permutation
=(1,2,...,n) is optimal.

Con81der a schedule defined by permutation 7w with initial processing times p. Let J
be a set of critical jobs, |J| > 1. If there exists at least one critical job which satisfies the
necessary and sufficient conditions of optimality of permutation 7, then processing times
p are optimal and no further action is required. Otherwise condition (1) of Theorem 1 is
satisfied while condition (2) is violated for each critical job from J and cannot be repaired by
adjusting processing times. This means that in an optimal solution to the inverse problem



a new job h should be critical, h ¢ J. Since potentially any job h ¢ J can be critical, we
consider different classes of schedules with the fixed critical job h, 1 < h < n. Observe that
for the inverse problem 1|adjustable d;, 7|Lmax studied in Section 3.1, Lemma 1 justifies
that only one class of problems can be considered.

Let h, 1 < h < n, be a selected job which should become critical for adjusted processing
times p. If the due dates do not satisfy relations (2) for the target permutation 7 and
selected job h, then no adjustment of processing times can make permutation 7 optimal
for the critical job h. If relations (2) are satisfied, then adjusting processing times changes
job completions times C}; so that relations (1) can be achieved. Taking into account that

J
Cj=>_bi
i=1
inequalities (1) reduce to the following relations:

h
> pi>dyp—dj, for1<j<h-1,
i=j+1
J
S pi<dj—dp, forh+1<j<n.
i=h+1

Thus the problem can be formulated as follows:
min |[p — p|
h
st. Y pi>dp—dj, 2<j<h,

i (11)
o pi<dj—dp, h+1<j<mn,

i=h+1

p; <Dj < Dj 1<j<n.

Clearly, if the original processing times p do not satisfy the constraints of problem (11),
then the processing times of some jobs from Ny = {2,3,...,h} should be increased and
those of the jobs from No = {h+1,h +2,...,n} should be decreased. It follows that the
adjustments required can be represented in the following form:

pj =pj +xj, jE M,
Pi=pi—Yj, JE N
and the deviations are within the boundaries:
OSCCJ‘ Sﬁj — Pj, J € Ny,
0<yj<pj—p; JEN.

We introduce constants P;, Q; and Aj, B;

h
Pj=(dn—dj—1) = > pi, J€EN,
i=j
J
Qj= > pi—(dj—dn), jeN,

i=h+1
Aj:p]_pja jENa
Bj:pj_£J7 jENa

10



and rewrite formulation (11) as follows:

min F (x,y)
h
s.t. Z:CZZP], Jj € Ny,
i=j
J ) 12
Zyzszv j€N27 ( )
i=ht1

0<z; <A, je€ENDN,

where objective function F' is of the form:

(> i+ Y By, for 41,3,
JEN1 JEN2
> ajsz—s— > 5jy]2-, for 454 3,
JEN JEN2
= { max{max{ajz;}, max5;Yi; ¢, for Yoo 0.,
F(X,Y) jGNl{ J J} JEN, {5;3/]}} oEo,a,,B
E O(ngl’lCCj-i- E Bjsgnyja for gHa;f)’?
JEN1 JEN2 Y
max | max {a;sgn; } %%{Bjsgnyj}}, for O30 5-

\

The solution to problem (12) defines an optimal solution to the inverse problem in a
class of schedules with the critical job h. Observe that in some classes no solution may exist.
The solution to the inverse problem 1|adjustable p;, 7|Lmax can be found by enumerating
all classes for which a solution exists and selecting the one with the smallest value of F.

In what follows we study problem (12) for different types of the norms.

4.1.1 Norms ¢; and /5

Consider first the norms ¢; 4 3 and ¢3 o g. It is convenient to rewrite formulation (12) using
complementary variables u; and v;:

Uj Zﬁj—f)\j:AJ’—LL’j, j € Ny,

P : 13
vj =pj—p; = Bj—y;, JEN (13)
which are bounded by A; and B;:
OS'UJ Sij jEN27
Then formulation (12) can be rewritten as
min  Fy (u,v)
h h
st You <Y Ai— P, J € N1,
oy
i i , 15
Z v; < E BZ_Qja j€N27 ( )
i=ht1 i=h+1
0 <u; <Ay, J € Ny,
OS,UJSBja j€N27

11



where
> o (Aj—u)+ > B (Bj—vj), forliag,
)a w,v) = JEN1 JEN>
=(nY) > i (A =)+ 3 B (Bj—v)?, for baag.
JEN1 JEN2
Since the objective function Fy (u,Vv) is separable, problem (15) can be decomposed
into two subproblems with nested constraints defined for variables Vi:

min Y oy (4 —uy) for norm ¢; or Y a; (A; —u;)? for norm £y
JEN1 JEN7
h h

st. Yu; <Y A —Pj, jeEN,
i=j i=j

and for variables Ny:

min Y B, (Bj —v;) for norm ¢y or ) B;(B; — v;)?  for norm /;
jENQ ' JEN2
J j
s.t. E v; < E B; —Qj, j € No,
i=h+1 i=h+1
OS’UjSBj, Jj € Na.

The above problems can be classified as Resource Allocation Problems with Nested Con-
straints with continuous variables, which are solvable in O (nlogn) time for linear and
quadratic objective functions by the algorithm from [6] and [8] (see p. 219). Hence in the
class of schedules with the critical job h, the problem can be solved in O (nlogn) time, and
the overall time complexity for considering n classes of schedules is O (n2 log n)

4.1.2 Norm /4
Consider the norm /s and formulation (12). The objective function to be minimized is

max {max {aja;}, max{By;} ¢. We introduce an auxiliary variable 6 for the value of
JEN: JEN2

the objective function, and rewrite problem (12) accordingly:

min 0 (16)

s.t. ajrj <0, J € N1, (17)

Z?:j xr; > Py,  j€ N, (19)

S ¥ > Qj, €N, (20)

OgijAj, 7 € Ny, (21)

0<y; <Bj, J € Na. (22)

It is easy to see that if the optimal value #* = max {;1;?\;1( {ojz;}, ?61%2( {Bjyj}} of

the objective function were known, then all variables x; and y; could be set equal to their
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largest possible values:
xf =min{A4;,0"/oy}, i€ Ny,
yp = min{By,0"/B.}, k& Ns.

Clearly, the optimum value #* should be as small as possible so that all constraints (19)-(22)
are satisfied. We start with § = 0 and increase it iteratively. For each current value of 6,
the z- and y-values are given by

1131(9) :min{Ai,O/ai}, 1 € Ny,
yx(0) = min {By,0/5.}, k € No.

Let Ny € Ny and Ny C Ny be the subsets of variables which have already reached their
upper bounds:

mi(9)=Ai, iGNl,

yk(é) = By, k € Ns.

We calculate the deficits D; for constraints (19)-(20):

Dj = max {P; — Y1 2i(0), o} if j € Ny,
Dj = max Qj - Zg:h—&-l yl(Q), 0} if j € Na.

If D; > 0, then the corresponding inequality is violated and the variables involved should
be increased by the total amount of D;. That increase is only possible if # is increased.

Suppose the current value of 6 is increased by § > 0. Then each variable z;(0), ¢ €
N1\ N, is increased by §/a;, and each variable y3(6), k € No\Na, is increased by 6/8;. As
aresult, the left-hand side of each inequality j from (19) is increased by § )", Go BN 1/
and that of each inequality j from (20) is increased by 5Zie{h+1,...,j}\ﬁg 1/B;.

Select 4 to be the smallest value such that either all inequalities from (19)-(20) are
satisfied or at least one of the variables x;, i € N1\ N1, or yz, k € No\ Na, reaches its upper
bound A; or By:

D.
0 = min< min J , max{A; —xz;(0),0} 5,
{jGNl{EiG{x...,h}\Nl 1/ @) }}

min { D; max {B; —y;(0), 0}}} .

IEN2 | Die(ht,. Wy L/ B

We set # := 6 + § and modify the subsets of jobs N, No. If there are still violated
constraints from (19)-(20), then we find the next d-increment and continue increasing 6.

Since each time at least one variable reaches its upper bound A; or By, there are no
more than n iterations that involve increasing 6. Each value of an increment § can be found
in O (n) time. Hence in the class of schedules with the critical job h, the problem can be
solved in O (ng) time, and the overall time complexity is O (n3)

4.1.3 Norm E%

Consider now the Hamming norm E%I a8 Similar to the case of norms ¢1 and /¢, the objec-
tive function for norm E% a8 separable and the corresponding problem can be decomposed

13



into two subproblems:

min > ajsgn (45 — uy)

J€N1
s.t. Zu1< ZA Pj, j € Ny,
i=j
OS“]SAja jENla
and )
min ) 5jsgn(Bj —vj)
JEN2
J J )
S.t. Z v; < Z Bi—Qj, J € No,
i=h+1 i=h+1
OS’UJ‘SBJ‘, j € Ns.

It is easy to see that there always exists an optimal solution to the above problems such
that u; € {0,A4,}, j € N1, and v; € {0, B;}, j € Na. Thus we can introduce new variables

u; = uj/A;j and v; = v;/B; and reformulate the above two subproblems as follows:

min ) ajsgn (1 - u;)

JEN1
h h . (23)
s.t. ZAzu;S ZAi_Pja j € Ny,
=5 i=j
u;G{O,l}, jeNla
and
min ) f(;sgn (1 - v;)
JEN2 '
J f e , (24)
s.t. Z BJU,L < E B’L - Qja J e NQ’
i=ht1 i=h+1
’UJE{O,l}, j € Na

Consider the special case of problem (23) with
]_)j < dj — dj,1 for all j € Ny. (25)

We show that the specified special case of problem (23) is NP-hard. Indeed, inequalities
(25) imply

sz (dp — dj— 1)<.Z pi — (dn — d;),

or equivalently

ZA — P < Z A; — Pjia,
i=j+1

so that the nested inequalities of problem (23) are redundant for all j € N except for the

first inequality with j = 2. Since minimizing sgn (1 —u ) for uj € {0,1} is equivalent
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to maximizing u;-, the special case of problem (23) is equivalent to the knapsack problem
which is known to be NP-hard:

h
max Y, a;u;
i=2
h h
s.t. Z Alu; < Z A; — Ps,
i=2 i=2
uj € {0,1}, 2<i<h.

Using similar arguments one can demonstrate that problem (24) is NP-hard as well.
Thus the inverse problem 1|adjustable p;, 7| Limax under the Hamming norm E% a5 18 NP-
hard.

4.1.4 Norm />

The problem with the norm £72% 5 1s similar to that with the norm lso studied in Section
4.1.2 and can be represented in the form:

min max {%?\f}f {ajsgnz;}, ?61?\;2{ {B;sgny; }}
s.t. constraints (19) — (22).

Due to the type of the objective function, the solution can be found by considering the
variables x; and y; one by one in the non-decreasing order of the corresponding penalties
a; and 3; and increasing them to their maximum values A; and Bj, respectively, until all
constraints (19) and (20) become satisfied.

Thus given the sequenced penalties a;; and f3;, the inverse problem can be solved in
O (n) time in the class of schedules with the critical job h and in O (n2) time in all classes.

4.2 Reverse problem 1|adjustable p;, L*|Lyax

Suppose the optimal value of Lyax for the given values p; and d; is L, a target value of the
maximum lateness is L*, L > L*, and the objective is to find adjusted processing times pj,
Dj € P;» Pjls 80 that ||p — p|| is minimum and the target value L* is achieved. This means
that the processing times of some jobs should be compressed at the minimum cost.

The target value L* induces the deadlines Ej = dj + L* for the jobs j € N. Thus
the reverse problem 1|adjustable pj, L*|Lmax reduces to the single machine problem with
controllable processing times 1|p; contr, d; < d;|K defined as follows. In that problem, job
processing times can be compressed within given boundaries [Qj’ pj} . Compression of the
processing time of job j from the maximum value p; by the amount y;, 0 <y; < p; — P
incurs the cost

> =1 By for ¢/1-norm,
> 5jy]2 for #o-norm,
K (y1,...,yn) = ¢ max{B,y;} for {oo-norm, (26)

> i—1Bjseny;  for ¢%-norm,
max {Bjsgnyj} for £7;-norm.
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The objective is to find the compressed processing times p; = p; — y; for all jobs j € N
such that the jobs meet their deadlines d; and the compression cost K is minimum.
4.2.1 Norms /1 and /s

Consider first the norms ¢; o g3 and ¢, g. The problem with controllable processing times
1|p; contr, d; < d;|K can be represented in the form:

min K‘ (27)
st S (pi—wi) <dj, jEN,
OSZ/j Sij JEN,

where B;j = p; —p. and K is linear or quadratic, see (26). The latter problem corresponds
to the well-known Resource Allocation Problems with Nested Constraints and can be solved
O (nlogn) time by an algorithm described in [6] and [8] (see p. 219) for linear and quadratic

objective function K.

4.2.2 Norm /4

Consider the norm /o o 3. The reverse problem 1|adjustable p;, L*|Lmax reduces to the
single machine problem with controllable processing times 1|p; contr, d; < Ej\ max { 5jyj}
with the min-max compression cost function. For this problem Choi et al. [3] have sug-
gested an algorithm of time complexity O (nlogn + ¢n), where ¢ is a constant depending

on log [masjex { (53— 2,) 1]

4.2.3 Norm (%

Consider now the Hamming norm @L B Since the smallest value of Lyax can be guaranteed
by sequencing the jobs in the earliest due date order (EDD) [7], we can limit our search
to the class of EDD-schedules. Renumber the jobs in the EDD order and sequence them
in the order of their numbering. Define job completion times using their initial processing

times P1, P2y ---, Pn: .
7
Ci = ij-
i=1

Suppose all jobs meet their deadlines except for the last job n:

We demonstrate that finding a set of jobs which processing times should be compressed is
NP-hard even if there is only one job n that does not meet its deadline d,,. We assume that
all jobs j € N are compressible, i.e., p; -p;> 0.
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The problem of finding the optimum job compressions is similar to problem (27) but
the objective function corresponds to the Hamming norm @I a

min ) 3;sgny;

JEN
n —
s.t. (pj —yj) < dn,
=1
OSijBja 1<.7<na

where Bj = p; — P

It is easy to see that there always exists an optimal solution to the above problem such
that y; € {0, B;}. Thus we can introduce new variables y; = y;/B; and reformulate the
above problem as follows:

min ) B;y;
JEN
n —
st Y (pg —Bjy;) < dp,
J:
y; €{0,1}, 1<j<n

To demonstrate that the latter problem is equivalent to the knapsack problem we rewrite
the problem using new variables z; =1 — y;-:

max Y (3,2
jEN
n _ n
s.t. Zlszj <d, — Zl (pj — Bj),
J= =
z; €{0,1}, l<j=n

Since the knapsack problem is known to be NP-hard, the reverse problem
1|adjustable pj, L*|Lmax under the Hamming norm 6% ap 18 NP-hard as well.

4.2.4 Norm />

Consider now the norm EE"‘; 3 Since the smallest value of Ly.x can be guaranteed by
sequencing the jobs in the earliest due date order (EDD) [7], we can limit our search to
the class of EDD-schedules. Renumber the jobs in the EDD order; break ties by giving
priority to smaller weights 3;. Sequence the jobs N in the order of their numbering using
their normal processing times p1, po, ..., pn. If deadlines Ej are met for every job j € N,
then no further action is required. Otherwise the cost K (y1,...,yn) = max {Bjsgnyj} can
take one of the values from the set {5, 535, ..., 5, }

If the optimum value K (y1,...,yn) = B, then all jobs j with costs 8; < 3, can be com-
pressed down to their smallest processing times p; and in the corresponding EDD-schedule
all jobs meet their deadlines. In order to find the smallest K-value, binary search can be used
to consider the trial values 3, one by one checking each time if in the EDD-schedule all jobs
meet their deadlines. Since for the given EDD-sequence, the feasibility check can be done
in O (n) time, the time complexity of solving the reverse problem 1|adjustable p;, L*|Lmax

under the Hamming norm (577 5 is O (nlogn).
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5 Conclusions

In this paper, we have studied the inverse and reverse counterparts of the single machine
scheduling problem 1||Lyax in the case of adjustable due dates or processing times under
five different types of the norm ¢y, 2, lo, {3 and ¢2%. Two problems appeared to be
NP-hard, for the remaining problems we have produced their mathematical programming
formulations and developed efficient solution algorithms.

The results are summarized in Table 1. Interestingly, the inverse problems with ad-
justable due dates appear to be easier than those with adjustable processing times, while
some reverse problems with adjustable due dates appear to be more difficult than those
with adjustable processing times.

Table 1: Time complexity of the inverse and reverse counterparts of problem 1||Lyax

Adjustable d; Norm Section | Adjustable p; Norm  Section
Inverse problem | O (nlogn) 01, 0o, 3.1 @) (n2 log n) 1,02, 4.1.1
with a given 7 O(nlogn) lo 3.1 O (n?) loo 4.1.2

O(nlogn) % 3.1 NP-hard = 4.1.3

O(nlogn) o 3.1 O (n?) o 414
Reverse problem | O (n?) 01, 0o 3.2 O (nlogn) ty, by 6, §]
with a given L* | O (n?) loo 3.2 O (nlogn+cn) floo 3]

O (n?) 0 3.2 | NP-hard G 4.2.3

O (n?) g 3.2 O (nlogn) o 424

Observe that the results summarized in Table 1 can be reformulated for inverse and
reverse counterparts of problem 1|r;|Cmax. The forward problem 1|7;|Cpax consists in
scheduling the jobs without overlapping starting not earlier than their release times r;, so
that the finish time of the last job is minimum. The necessary and sufficient conditions for
optimality of a given job sequence for problem 1|7;j|Cmax are symmetric to those specified
in Theorem 1 for problem 1||Lmax, see [10].

It is an interesting research goal to study the inverse and reverse counterparts of prob-
lems 1||Lmax and 1]7j|Cmax with two types of parameters adjustable simultaneously: ad-
justable processing times and due dates for the first problem or adjustable processing times
and release times for the second one.
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APPENDIX

Proof of Lemma 1. Suppose job h is critical for the original (non-adjusted) due dates d,
but it is not critical for some optimum adjusted due dates d. If another job k is critical for
d, then

Ly=Cy—d, > Cp—dp=1Ls (h is critical for due dates d),
Ly =Cp— (Yh < Cy— Jk = I (k is critical for due dates &) (28)

In addition, we will use the following two conditions which hold for any job u € N:

L,=Cy—d, < Ch—dn=Ly (h is critical for due dates d), (29)
L,=Cy—dy, < Cp—dy=Ly (k is critical for due dates d). (30)

To prove the lemma, we demonstrate that there exists another set of optimum due dates

~
=~

d such that the following properties hold:
(i) both jobs k and h are critical for due dates d;
(ii) due date boundaries are observed, i.e., c@ € [glj, le] for all jobs j € N;

(iii) due date deviation of d from the initial due dates is no larger than that of d:

é_ngHa_d

E (31)

(iv) the necessary and sufficient conditions of Theorem 1 of optimality of permutation 7
are satisfied for the modified due dates d and job k.

The latter property implies that 7 is an optimal permutation for d which together with
Property (i) proves the lemma.

We define the new values d so that the maximum lateness L0 = max;en {Cj - c@}

calculated for permutation m and due dates d satisfies:
L° = min {Ek Lh} . (32)
Consider the two cases.

Case 1: R
L% = Ly < Ly. (33)

In this case, condition (30) implies
Ly<ILp=1L°

so that any job u € N\ {k} has the lateness with respect to due dates d no larger than L°
and Property (i) holds for job k.
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In order to achieve Property (i) for job h, its due date should be modified to the value

d, = Cy, — L, (34)

so that R R
Lh=0h—dh=L0.

Observe that the modified due date (Yh is smaller than c?h:

(28)

= ~ ~ ~ 28
dh—dh:(ch—LO)—dh:Lh—L0< (3_3)

Ly — L9 = 0.

Thus the due dates d are obtained from d by decreasing one component c/l\h down to c?h.
We demonstrate that Properties (ii)-(iii) hold for job h:

=~ (33)
dp & Cp—L° > Cp—Ly=dy>d,
so that

<dj < dp.

EN

dp <

Thus condition (31) is satisfied. R
Consider now Property (iv). Due to Property (i), job k is critical for the due dates d
and d so that condition (1) holds. We need to demonstrate that condition (2) holds for

d and any job j that precedes k. Indeed, according to the assumption, due dates d are
optimum so that condition (2) holds for d and any job j that precedes the critical job k.

Clefirly, after one component of d is decreased leading to ?1, condition (2) will still hold
for d and the same critical job k.
Case 2: R
L0 =Ly < Ly. (35)
In order to achieve Property (i) and to decrease the maximum lateness value down to
L0, consider the due dates d and a set of jobs U = {u €N | L, > LO} which lateness is

larger than LC. Clearly, set U includes job k. For each job u € U, its due date c?u should
be modified to the value

~

dy=C, —L° (36)

so that its lateness decreases to the value L9:

o~ ~

Ly=C,—d, =IO (37)
Observe that each modified due date d,, is larger than the corresponding due date dy:
dy —dy = (Cy — L% —dy = L, — L° > 0.

Due to condition (37), after the due dates of the jobs from U are increased, all of them

(including job k) become critical for d.
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Consider now Property (i) for job h. If h € U, then job h is properly adjusted as

described above and it becomes critical for d. Otherwise, h ¢ U or equivalently
Ly < I, (38)
and its due date c?h should be modified to the value
= Oy — I, (39)

so that R R
Lh=0h—dh=L0.

Observe that the modified due date c?h is smaller than c?h:

= ~ ~ ~ (38)
dp —dp = (Cp, —L°) —dp, =L, — L° < 0.

Now we demonstrate that Properties (ii)-(iii) hold for the jobs from U and for job h.
The due date of any job u € U increases from d,, > d,, to

o~
~

(29)

29 _
&P, -¥ 0, -1, < d, <4
It follows that N
d, < dy < dy < dy,
so that the due date deviation of any job w € U does not increase:
dy — dy| < |dy — d .

Consider now the adjustment of the due date of job h. If h € U, then the above
arguments hold for job h. Otherwise the due date of job h decreases from dp < dj, to

& E o, -1"T e - Ly =dy > dy,
so that =
dp < dp, < dpy < dp.

Thus condition (31) is satisfied.
Finally, we prove Property (iv). Due to property (i), job k is critical for the due dates

d and d so that condition (1) holds. We need to demonstrate that condition (2) holds for

d and any job j that precedes k. Since the necessary and sufficient conditions of optimality

~

of permutation 7 hold for the critical job k and due dates d, then

~

d; < dy.

IN

If j ¢ U, then its due date is not increased, so that

S
(VAN
.y
B



If j = uw € U, then condition (2) is violated only if

and

C, < Ch

which implies

a contradiction to (37).
Lemma 1 is proved. [
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