658 research outputs found

    A probabilistic model of insolation for the Mojave Desert area

    Get PDF
    A discussion of mathematical models of insolation characteristics suitable for use in analysis of solar energy systems is presented and shows why such models are essential for solar energy system design. A model of solar radiation for the Mojave Desert area is presented with probabilistic and deterministic components which reflect the occurrence and density of clouds and haze, and mimic their effects on both direct and indirect radiation. Multiple comparisons were made between measured total energy received per day and the corresponding simulated totals. The simulated totals were all within 11 percent of the measured total. The conclusion is that a useful probabilistic model of solar radiation for the Goldstone, California, area of the Mojave Desert has been constructed

    Crystal-field splitting for low symmetry systems in ab initio calculations

    Full text link
    In the framework of the LDA+U approximation we propose the direct way of calculation of crystal-field excitation energy and apply it to La and Y titanates. The method developed can be useful for comparison with the results of spectroscopic measurements because it takes into account fast relaxations of electronic system. For titanates these relaxation processes reduce the value of crystal-field splitting by 30\sim30% as compared with the difference of LDA one electron energies. However, the crystal-field excitation energy in these systems is still large enough to make an orbital liquid formation rather unlikely and experimentally observed isotropic magnetism remains unexplained.Comment: 13 pages, 5 figures, 3 table

    Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds

    Full text link
    By means of two- and three-dimensional particle-in-cell simulations, we investigate the process of driven magnetic reconnection at the termination shock of relativistic striped flows. In pulsar winds and in magnetar-powered relativistic jets, the flow consists of stripes of alternating magnetic field polarity, separated by current sheets of hot plasma. At the wind termination shock, the flow compresses and the alternating fields annihilate by driven magnetic reconnection. Irrespective of the stripe wavelength "lambda" or the wind magnetization "sigma" (in the regime sigma>>1 of magnetically-dominated flows), shock-driven reconnection transfers all the magnetic energy of alternating fields to the particles, whose average Lorentz factor increases by a factor of sigma with respect to the pre-shock value. In the limit lambda/(r_L*sigma)>>1, where r_L is the relativistic Larmor radius in the wind, the post-shock particle spectrum approaches a flat power-law tail with slope around -1.5, populated by particles accelerated by the reconnection electric field. The presence of a current-aligned "guide" magnetic field suppresses the acceleration of particles only when the guide field is stronger than the alternating component. Our findings place important constraints on the models of non-thermal radiation from Pulsar Wind Nebulae and relativistic jets.Comment: 25 pages, 14 figures, movies available at https://www.cfa.harvard.edu/~lsironi/sironi_movies.tar ; in press, special issue of Computational Science and Discovery on selected research from the 22nd International Conference on Numerical Simulation of Plasma

    Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar

    Full text link
    We show that the relativistic wind in the Crab pulsar, which is commonly thought to be invisible in the region upstream of the termination shock at R < 0.1 pc, in fact could be directly observed through its inverse Compton gamm-ray emission. The search for such specific component of radiation in the gamma-ray spectrum of the Crab can provide unique information about the unshocked pulsar wind that is not accessible at other wavelengths.Comment: 11 pages, 11 figures, to appear in one of the April issues of MNRA

    A theoretical investigation into the trapping of noble gases by clathrates on Titan

    Full text link
    In this paper, we use a statistical thermodynamic approach to quantify the efficiency with which clathrates on the surface of Titan trap noble gases. We consider different values of the Ar, Kr, Xe, CH4, C2H6 and N2 abundances in the gas phase that may be representative of Titan's early atmosphere. We discuss the effect of the various parameters that are chosen to represent the interactions between the guest species and the ice cage in our calculations. We also discuss the results of varying the size of the clathrate cages. We show that the trapping efficiency of clathrates is high enough to significantly decrease the atmospheric concentrations of Xe and, to a lesser extent, of Kr, irrespective of the initial gas phase composition, provided that these clathrates are abundant enough on the surface of Titan. In contrast, we find that Ar is poorly trapped in clathrates and, as a consequence, that the atmospheric abundance of argon should remain almost constant. We conclude that the mechanism of trapping noble gases via clathration can explain the deficiency in primordial Xe and Kr observed in Titan's atmosphere by Huygens, but that this mechanism is not sufficient to explain the deficiency in Ar.Comment: Accepted for publication in Planetary and Space Scienc

    Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.Comment: 375 authors from 57 institutions, 6 pages, 3 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Six Years of Chandra Observations of Supernova Remnants

    Full text link
    We present a review of the first six years of Chandra X-ray Observatory observations of supernova remnants. From the official "first-light" observation of Cassiopeia A that revealed for the first time the compact remnant of the explosion, to the recent million-second spectrally-resolved observation that revealed new details of the stellar composition and dynamics of the original explosion, Chandra observations have provided new insights into the supernova phenomenon. We present an admittedly biased overview of six years of these observations, highlighting new discoveries made possible by Chandra's unique capabilities.Comment: 82 pages, 28 figures, for the book Astrophysics Update

    Charged hadron multiplicity fluctuations in Au+Au and Cu+Cu collisions from sqrt(s_NN) = 22.5 to 200 GeV

    Full text link
    A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.Comment: 464 authors from 60 institutions, 17 pages, 12 figures, 1 table. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Cold Nuclear Matter Effects on J/Psi as Constrained by Deuteron-Gold Measurements at sqrt(s_NN) = 200 GeV

    Full text link
    We present a new analysis of J/psi production yields in deuteron-gold collisions at sqrt(s_NN) = 200 GeV using data taken by the PHENIX experiment in 2003 and previously published in [S.S. Adler et al., Phys. Rev. Lett 96, 012304 (2006)]. The high statistics proton-proton J/psi data taken in 2005 is used to improve the baseline measurement and thus construct updated cold nuclear matter modification factors R_dAu. A suppression of J/psi in cold nuclear matter is observed as one goes forward in rapidity (in the deuteron-going direction), corresponding to a region more sensitive to initial state low-x gluons in the gold nucleus. The measured nuclear modification factors are compared to theoretical calculations of nuclear shadowing to which a J/psi (or precursor) break-up cross-section is added. Breakup cross sections of sigma_breakup = 2.8^[+1.7_-1.4] (2.2^[+1.6_-1.5]) mb are obtained by fitting these calculations to the data using two different models of nuclear shadowing. These breakup cross section values are consistent within large uncertainties with the 4.2 +/- 0.5 mb determined at lower collision energies. Projecting this range of cold nuclear matter effects to copper-copper and gold-gold collisions reveals that the current constraints are not sufficient to firmly quantify the additional hot nuclear matter effect.Comment: 453 authors from 59 institutions, 15 pages, 13 figures, 5 tables. Submitted to Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore