417 research outputs found

    Removal of Titan's Atmospheric Noble Gases by their Sequestration in Surface Clathrates

    Full text link
    A striking feature of the atmosphere of Titan is that no heavy noble gases other than argon were detected by the Gas Chromatograph Mass Spectrometer (GCMS) aboard the Huygens probe during its descent to Titan's surface in January 2005. Here we provide an explanation of the mysterious absence or rarity of these noble gases in Titan's atmosphere: the thermodynamic conditions prevailing at the surface-atmosphere interface of the satellite allow the formation of multiple guest clathrates that preferentially store some species, including all heavy noble gases, over others. The clean water ice needed for formation of these clathrates could be delivered by successive episodes of cryovolcanic lavas that have been hypothesized to regularly cover the surface of Titan. The formation of clathrates in the porous lavas and their propensity for trapping Ar, Kr and Xe would progressively remove these species from the atmosphere of Titan over its history. In some circumstances, a global clathrate crust with an average thickness not exceeding a few meters could be sufficient on Titan for a complete removal of the heavy noble gases from the atmosphere.Comment: Accepted for publication in The Astrophysical Journal Letter

    Simple relations for the close-off depth and age in dry-snow densification

    Get PDF
    A physical model for the snow/firn densification process (Salamatin and others, 2006) and Martinerie and others' (1992, 1994) correlation for the firn density at the pore closure are employed to perform a scale analysis and computational experiments in order to deduce simplified relations for the close-off depth and ice age in quasi-stationary ice formation conditions. The critical snow density at which ice-grain rearrangement stops is used to take into account variability of snow structures subjected to densification. The results obtained are validated on a representative set of ice-core data from 22 sites which covers wide ranges of present-day temperatures and ice accumulation rates. A simple analytical approximation for the density-depth profile is proposed

    Average time scale for Dome Fuji ice core, East Antarctica

    Get PDF
    Three different approaches to ice-core age dating are employed to develop a depth-age relationship at Dome F: (1) correlation of the ice-core isotope record to the geophysical metronome(Milankovich surface temperature cycle) inferred from the deep borehole temperature profile at Vostok,(2) importing a known chronology from another(Devils Hole) paleoclimatic signal, and(3) direct ice sheet flow modeling. Inverse Monte Carlo sampling is used to constrain the accumulation rate reconstruction and ice flow simulations in order to find the best-fit glaciological time scale matched with the two other chronologies. General uncertainty of the different age estimates varies from 2 to 6kyr on average and reaches 6-14kyr at maximum. Whatever the causes of this discrepancy might be, they are thought to be of different origins, and the age errors are assumed to be independent. Thus, the average time scale for the Dome F ice core down to a depth of 2500m(ice age of 335kyr) is deduced consistently with all three age-depth relationships within the standard deviation limits of ±3.3kyr, and its accuracy is estimated as 1.4kyr on average. The constrained ice-sheet flow model allows extrapolation of the ice age-depth curve further to the glacier bottom and predicts the ages at depths of 2800, 3000, and 3050m to be 615±70, 1560±531, and 2985±1568kyr, respectively

    Air-hydrate crystal growth in polar ice

    Get PDF
    Based on the theory of precipitation from supersaturated solutions proposed by Lifshitz and Slyozov (J. Phys. Chem. Solids 19 (1/2) (1961) 35), we develop a mathematical description of post-formation growth (ripening) of mixed air clathrate-hydrate crystalline inclusions in polar ice sheets. The growth is controlled by oxygen and nitrogen diffusion through the ice matrix. Hydrate populations in general go through three sequential stages: (1) a short transient characterized by the rapid composition relaxation and dissolution of the smallest hydrates, (2) a slow transformation of the resulting size distributions towards a steady-state pattern that is an attribute of (3) the asymptotic stage of ripening. A regularization procedure is used to numerically solve the initial value problem. Computer simulations of the hydrate size distributions are compared to the data from a 3300-m ice core from Vostok Station, East Antarctica. The asymptotic stage is likely unattainable in natural conditions. Data from the GRIP ice core (central Greenland) suggest that the activation energy of hydrate growth increases at the elevated temperature near the ice-sheet bottom. The theory predicts extinction of the climatically induced fluctuations in the hydrate number-concentration and mean-radius profiles in ice sheets with depth. © 2003 Elsevier B.V. All rights reserved

    Bubbly-ice densification in ice sheets: I. Theory

    Get PDF
    Dry snow on the surface of polar ice ice sheets is first densified and metamorphosed to produce firn. Bubbly ice is the next stage of the transformation process which takes place below the depth of pore closure. This stage extends to the transition zone where, due to high pressures and low temperatures, air trapped in bubbles and ice begins to form the mixed air clathrate hydrates, while the gas phase progressively disappears. Here we develop a model of bubbly-ice rheology and ice-sheet dynamics taking into account glacier-ice compressibility. The interaction between hydrostatic compression of air bubbles, deviatoric (uniaxial) compressive deformation of the ice matrix and global deformations of the glacier body is considered. The ice-matrix pressure and the absolute-load pressure are distinguished. Similarity theory and scale analysis are used to examine the resultant mathematical model of bubbly-ice densification. The initial rate of bubble compression in ice sheets appears to be relatively high, so that the pressure (density) relaxation process takes place only 150-200 m in depth (below pore close-off) to reach its asymptotic phase, wherein the minimal drop between bubble and ice pressures is governed by the rate of loading (ice accumulation). This makes it possible to consider densification under stationary (present-day) conditions of ice formation as a special case of primary interest. The computational tests performed with the model indicate that both ice-porosity and bubble-pressure profiles in ice sheets are sensitive to variations of the rheological parameters of pure ice. However, only the bubble-pressure profile distinguishes between the rheological properties at low and high stresses. The porosity profile at the asymptotic phase is mostly determined by the air content in the ice. In the companion paper (Lipenkov and others, 1997), we apply the model to experimental data from polar ice cores and deduce, through an inverse procedure, the rheological properties of pure ice as well as the mean air content in Holocene and glacial ice sediments at Vostok Station (Antarctica)

    Specifics of geological composition, geochemistry and geochronology of rocks from the Kresty alkaline-ultrabasic massif (Maimecha-Kotui province, Polar Siberia)

    Get PDF
    In this work, we demonstrate new data that allows us to accurate geochronological ranges of formation of the Kresty alkaline-ultrabasic massif, which is considered to be a satellite of the Gulinian giant pluton. We also interpreted geological, geochemical and isotope-geochemical data obtained earlier for major varieties of this volcanic-plutonic association taking into account new geochronological results, as well as considered new aspects/information on matter source of alkaline-ultrabasic massifs from this province. One of the main aspects is interaction of Siberian super plume matter with hosting substrate of Siberian craton continental crust

    Bubbly-ice densification in ice sheets: II. Applications

    Get PDF
    A mathematical model for simulating the densification of bubbly glacier ice is used to interpret the following experimental data from the Vostok (central Antarctica) ice core: two ice-porosity profiles obtained by independent methods and a bubble-pressure profile obtained by direct measurements of air pressure within individual bubbles. The rheological properties of pure polycrystalline ice are deduced from the solution of the inverse problem. The model and the inferred ice-flow law are then validated, using porosity profiles from seven other ice cores drilled in Antarctica and Greenland, in the temperature range from -55° to -20°C. The following expression is adopted for the constitutive law: 2ė = (τ/μ1 + τα/μ2) exp[Q(1/Ts - 1/T)/Rs] where ė and τ are the effective strain rate and stress, respectively, α is the creep exponent taken as 3.5, Rs is the gas constant and T(Ts) is the temperature (standard temperature). The numerical values obtained for the "linear" and "non-linear" viscosities are: μ1 = 2.9 ± 1.3 MPa year and μ2 = 0.051 ± 0.019 MPaα year, and the apparent activation energy Q is confirmed to be 60 kj mole-1. The corresponding flow law is in good agreement with results of both mechanical tests and independent estimations based on the analysis of different natural phenomena associated with glacier-ice deformation. When the model is constrained by the porosity and bubble-pressure profiles from Vostok, the mean air content in Holocene ice is inferred to be about 0.088 cm3g-1. The corresponding mean air pressure in bubbles at the end of pore closure is about 0.083 MPa, whereas the atmospheric pressure at this depth level would be 0.063 MPa. The influence of the climatic change on the ice-porosity profile is discussed. It resulted in an increased air content in ice at Vostok during the Last Glacial Maximum: 0.096 cm3g-1
    corecore