51 research outputs found

    Free radical processes involving electron transfer or producing [gamma]-lactones

    Get PDF
    The formation constants of isopropyldichloromercurate and isopropyldiiodomercurate have been calculated to be 8.0 x 10[superscript]-2 and 8.6 dm[superscript]3/mole, respectively, using the variation of [superscript]1H NMR shift as a function of halide ion concentration. The reaction of an equilibrium solution containing approximately 55% isopropyldichlorormercurate with bromotrichloromethane was studied. Evidence is presented that supports the conclusion that the reaction is a free radical chain mechanism of considerable length (initial kinetic chain length \u3e 38,000). The chain propagating step appears to be the reduction of the trichloromethyl radical by the isopropylmercurate. Though dialkylmercurials do not form mercurates with added iodide ion, the presence of iodide ion does significantly increase the production of alkyl bromides (in the reaction with bromotrichloromethane) by reducing the trichloromethyl radical before it can abstract a [beta]-hydrogen from the dialkylmercurial;The reaction of the 1-cyano-1-methylethyl radical with vinyl ethers was studied. In the absence of added electron acceptors, the reaction appears to be controlled by the substituent bound to the oxygen atom and can proceed via electron transfer or by radical abstractions or couplings. In substituent bound to the oxygen atom and can proceed via electron transfer or by radical abstractions or couplings. In the presence of added electron acceptors the reaction proceeds by electron transfer via an inner sphere electron transfer complex;The reaction of free radicals with tert-butyl peroxypent-4-enoate was studied. With alkyl mercurials the reaction gives moderate yields of [gamma]-lactones. With di-tert-butyl-mercury or trialkylphosphites the reaction gives 75-85% yields of the [gamma]-lactone, dihydro-5-(2,2-dimethylpropyl)-2(3H-furanone). Evidence is presented that indicates that the [gamma]-lactones are produced in a free radical chain manner

    Power Output Is Increased After Phosphorylation of Myofibrillar Proteins in Rat Skinned Cardiac Myocytes

    Get PDF
    This work was supported by American Heart Association Beginning Grant-in-Aid 9914291 and NIH Grant HL57852.The publisher's version may be found at http://circres.ahajournals.org/cgi/content/full/89/12/1184ß-Adrenergic stimulation increases stroke volume in mammalian hearts as a result of protein kinase A (PKA)-induced phosphorylation of several myocyte proteins. This study investigated whether PKA-induced phosphorylation of myofibrillar proteins directly affects myocyte contractility. To test this possibility, we compared isometric force, loaded shortening velocity, and power output in skinned rat cardiac myocytes before and after treatment with the catalytic subunit of PKA. Consistent with previous studies, PKA increased phosphorylation levels of myosin binding protein C and troponin I, and reduced Ca2+ sensitivity of force. PKA also significantly increased both maximal force (25.4±8.3 versus 31.6±11.3 µN [P<0.001, n=12]) and peak absolute power output (2.48±1.33 versus 3.38±1.52 µW/mg [P<0.05, n=5]) during maximal Ca2+ activations. Furthermore, PKA elevated power output at nearly all loads even after normalizing for the increase in force. After PKA treatment, peak normalized power output increased {approx}20% during maximal Ca2+ activations (n=5) and {approx}33% during half-maximal Ca2+ activations (n=9). These results indicate that PKA-induced phosphorylation of myofibrillar proteins increases the power output-generating capacity of skinned cardiac myocytes, in part, by speeding the step(s) in the crossbridge cycle that limit loaded shortening rates, and these changes likely contribute to greater contractility in hearts after ß-adrenergic stimulation

    A Very Early-Branching Staphylococcus aureus Lineage Lacking the Carotenoid Pigment Staphyloxanthin

    Get PDF
    Here we discuss the evolution of the northern Australian Staphylococcus aureus isolate MSHR1132 genome. MSHR1132 belongs to the divergent clonal complex 75 lineage. The average nucleotide divergence between orthologous genes in MSHR1132 and typical S. aureus is approximately sevenfold greater than the maximum divergence observed in this species to date. MSHR1132 has a small accessory genome, which includes the well-characterized genomic islands, νSAα and νSaβ, suggesting that these elements were acquired well before the expansion of the typical S. aureus population. Other mobile elements show mosaic structure (the prophage φSa3) or evidence of recent acquisition from a typical S. aureus lineage (SCCmec, ICE6013 and plasmid pMSHR1132). There are two differences in gene repertoire compared with typical S. aureus that may be significant clues as to the genetic basis underlying the successful emergence of S. aureus as a pathogen. First, MSHR1132 lacks the genes for production of staphyloxanthin, the carotenoid pigment that confers upon S. aureus its characteristic golden color and protects against oxidative stress. The lack of pigment was demonstrated in 126 of 126 CC75 isolates. Second, a mobile clustered regularly interspaced short palindromic repeat (CRISPR) element is inserted into orfX of MSHR1132. Although common in other staphylococcal species, these elements are very rare within S. aureus and may impact accessory genome acquisition. The CRISPR spacer sequences reveal a history of attempted invasion by known S. aureus mobile elements. There is a case for the creation of a new taxon to accommodate this and related isolates

    The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.

    Get PDF
    ABSTRACT: A global genome database of all of Earth’s species diversity could be a treasure trove of scientific discoveries. However, regardless of the major advances in genome sequencing technologies, only a tiny fraction of species have genomic information available. To contribute to a more complete planetary genomic database, scientists and institutions across the world have united under the Earth BioGenome Project (EBP), which plans to sequence and assemble high-quality reference genomes for all ∼1.5 million recognized eukaryotic species through a stepwise phased approach. As the initiative transitions into Phase II, where 150,000 species are to be sequenced in just four years, worldwide participation in the project will be fundamental to success. As the European node of the EBP, the European Reference Genome Atlas (ERGA) seeks to implement a new decentralised, accessible, equitable and inclusive model for producing high-quality reference genomes, which will inform EBP as it scales. To embark on this mission, ERGA launched a Pilot Project to establish a network across Europe to develop and test the first infrastructure of its kind for the coordinated and distributed reference genome production on 98 European eukaryotic species from sample providers across 33 European countries. Here we outline the process and challenges faced during the development of a pilot infrastructure for the production of reference genome resources, and explore the effectiveness of this approach in terms of high-quality reference genome production, considering also equity and inclusion. The outcomes and lessons learned during this pilot provide a solid foundation for ERGA while offering key learnings to other transnational and national genomic resource projects.info:eu-repo/semantics/publishedVersio

    Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome

    No full text
    Abstract Smith-Lemli-Opitz Syndrome (SLOS) is a recessive human disease caused by defective cholesterol (CHOL) synthesis at the level of DHCR7 (7-dehydrocholesterol reductase), which normally catalyzes the conversion of 7-dehydrocholesterol (7DHC) to CHOL. Formation and abnormal accumulation of 7DHC and 7DHC-derived oxysterols occur in SLOS patients and in rats treated with the DHCR7 inhibitor AY9944. The rat SLOS model exhibits progressive and irreversible retinal dysfunction and degeneration, which is only partially ameliorated by dietary CHOL supplementation. We hypothesized that 7DHC-derived oxysterols are causally involved in this retinal degeneration, and that blocking or reducing their formation should minimize the phenotype. Here, using the SLOS rat model, we demonstrate that combined dietary supplementation with CHOL plus antioxidants (vitamins E and C, plus sodium selenite) provides better outcomes than dietary CHOL supplementation alone with regard to preservation of retinal structure and function and lowering 7DHC-derived oxysterol formation. These proof-of-principle findings provide a translational, pre-clinical framework for designing clinical trials using CHOL-antioxidant combination therapy as an improved therapeutic intervention over the current standard of care for the treatment of SLOS
    corecore