262 research outputs found

    Target Selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The survey's broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEE's primary sample consists of ~100,000 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases.Comment: Accepted to AJ. 31 pages, 11 figure

    Complement and coagulation cascades activation is the main pathophysiological pathway in early-onset severe preeclampsia revealed by maternal proteomics

    Get PDF
    Preeclampsia is a pregnancy-specific multisystem disorder and a leading cause of maternal and perinatal morbidity and mortality. The exact pathogenesis of this multifactorial disease remains poorly defined. We applied proteomics analysis on maternal blood samples collected from 14 singleton pregnancies with early-onset severe preeclampsia and 6 uncomplicated pregnancies to investigate the pathophysiological pathways involved in this specific subgroup of preeclampsia. Maternal blood was drawn at diagnosis for cases and at matched gestational age for controls. LC-MS/MS proteomics analysis was conducted, and data were analyzed by multivariate and univariate statistical approaches with the identification of differential pathways by exploring the global human protein-protein interaction network. The unsupervised multivariate analysis (the principal component analysis) showed a clear difference between preeclamptic and uncomplicated pregnancies. The supervised multivariate analysis using orthogonal partial least square discriminant analysis resulted in a model with goodness of fit (R2X = 0.99, p < 0.001) and a strong predictive ability (Q2Y = 0.8, p < 0.001). By univariate analysis, we found 17 proteins statistically different after 5% FDR correction (q-value < 0.05). Pathway enrichment analysis revealed 5 significantly enriched pathways whereby the activation of the complement and coagulation cascades was on top (p = 3.17e-07). To validate these results, we assessed the deposits of C5b-9 complement complex and on endothelial cells that were exposed to activated plasma from an independent set of 4 cases of early-onset severe preeclampsia and 4 uncomplicated pregnancies. C5b-9 and Von Willbrand factor deposits were significantly higher in early-onset severe preeclampsia. Future studies are warranted to investigate potential therapeutic targets for early-onset severe preeclampsia within the complement and coagulation pathway

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor

    Get PDF
    Reactive oxygen species regulate redox-signaling processes, but in excess they can cause cell damage, hence underlying the aetiology of several neurological diseases. Through its ability to down modulate reactive oxygen species, glutathione is considered an essential thiol-antioxidant derivative, yet under certain circumstances it is dispensable for cell growth and redox control. Here we show, by directing the biosynthesis of γ-glutamylcysteine—the immediate glutathione precursor—to mitochondria, that it efficiently detoxifies hydrogen peroxide and superoxide anion, regardless of cellular glutathione concentrations. Knocking down glutathione peroxidase-1 drastically increases superoxide anion in cells synthesizing mitochondrial γ-glutamylcysteine. In vitro, γ-glutamylcysteine is as efficient as glutathione in disposing of hydrogen peroxide by glutathione peroxidase-1. In primary neurons, endogenously synthesized γ-glutamylcysteine fully prevents apoptotic death in several neurotoxic paradigms and, in an in vivo mouse model of neurodegeneration, γ-glutamylcysteine protects against neuronal loss and motor impairment. Thus, γ-glutamylcysteine takes over the antioxidant and neuroprotective functions of glutathione by acting as glutathione peroxidase-1 cofactor

    Chikungunya virus infections among travellers returning to Spain, 2008 to 2014

    Get PDF
    Since the first documented autochthonous transmission of chikungunya virus in the Caribbean island of Saint Martin in 2013, the infection has been reported within the Caribbean region as well as North, Central and South America. The risk of autochthonous transmission of chikungunya virus becoming established in Spain may be elevated due to the large numbers of travellers returning to Spain from countries affected by the 2013 epidemic in the Caribbean and South America, as well as the existence of the Aedes albopictus vector in certain parts of Spain. We retrospectively analysed the laboratory diagnostic database of the National Centre for Microbiology, Institute of Health Carlos III (CNM-ISCIII) from 2008 to 2014. During the study period, 264 confirmed cases, of 1,371 suspected cases, were diagnosed at the CNM-ISCIII. In 2014 alone, there were 234 confirmed cases. The highest number of confirmed cases were reported from the Dominican Republic (n = 136), Venezuela (n = 30) and Haiti (n = 11). Six cases were viraemic in areas of Spain where the vector is present. This report highlights the need for integrated active case and vector surveillance in Spain and other parts of Europe where chikungunya virus may be introduced by returning travellers

    Neutral Bremsstrahlung Emission in Xenon Unveiled

    Full text link
    [EN] We present evidence of non-excimer-based secondary scintillation in gaseous xenon, obtained using both the NEXT-White time projection chamber (TPC) and a dedicated setup. Detailed comparison with first-principle calculations allows us to assign this scintillation mechanism to neutral bremsstrahlung (NBrS), a process that is postulated to exist in xenon that has been largely overlooked.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Advanced Grant No. 339787-NEXT; the European Unions Framework Program for Research and Innovation Horizon 2020 (20142020) under Grant Agreements No. 674896, No. 690575, and No. 740055; the Ministerio de Economa y Competitividad and the Ministerio de Ciencia, Innovacin y Universidades of Spain under Grants No. FIS2014-53371-C04 and No. RTI2018-095979, the Severo Ochoa Program Grants No. SEV-2014-0398 and No. CEX2018-000867-S, and the Mara de Maeztu Program MDM-2016-0692; the Generalitat Valenciana under Grants No. PROMETEO/2016/120 and No. SEJI/2017/011; the Portuguese FCT under Project No. PTDC/FIS-NUC/3933/2021 and under Project No. UIDP/04559/2020 to fund the activities of LIBPhys-UC; the U.S. Department of Energy under Contracts No. DE-AC02-06CH11357 (Argonne National Laboratory), No. DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), No. DE-FG02-13ER42020 (Texas A&M), and No. DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington (USA). D. G.-D. acknowledges Ramon y Cajal program (Spain) under Contract No. RYC- 2015-18820. J. M.-A. acknowledges support from Fundacin Bancaria la Caixa (ID 100010434), Grant No. LCF/BQ/PI19/11690012. We would like to thank Lorenzo Muniz for insightful discussions on the subtleties of electron transport in gases.Henriques, C.; Amedo, P.; Teixeira, JMR.; González-Díaz, D.; Azevedo, C.; Para, A.; Martín-Albo, J.... (2022). Neutral Bremsstrahlung Emission in Xenon Unveiled. Physical Review X. 12(2):021005-1-021028-23. https://doi.org/10.1103/PhysRevX.12.021005021005-1021028-2312
    corecore