76 research outputs found
A statistical framework for assessing pharmacological responses and biomarkers using uncertainty estimates
High-throughput testing of drugs across molecular-characterised cell lines can identify candidate treatments and discover biomarkers. However, the cells’ response to a drug is typically quantified by a summary statistic from a best-fit dose-response curve, whilst neglecting the uncertainty of the curve fit and the potential variability in the raw readouts. Here, we model the experimental variance using Gaussian Processes, and subsequently, leverage uncertainty estimates to identify associated biomarkers with a new Bayesian framework. Applied to in vitro screening data on 265 compounds across 1074 cancer cell lines, our models identified 24 clinically established drug-response biomarkers, and provided evidence for six novel biomarkers by accounting for association with low uncertainty. We validated our uncertainty estimates with an additional drug screen of 26 drugs, 10 cell lines with 8 to 9 replicates. Our method is applicable to any dose-response data without replicates, and improves biomarker discovery for precision medicine
Predictors for a dementia gene mutation based on gene-panel next-generation sequencing of a large dementia referral series
Next-generation genetic sequencing (NGS) technologies facilitate the screening of multiple genes linked to neurodegenerative dementia, but there is little guidance available about their use in clinical practice. Guidelines on which patients would most profit from testing, and information on the likelihood of discovery of a causal variant in a clinical syndrome, are conspicuously absent from the literature, mostly for a lack of large-scale studies. We applied a validated NGS dementia panel to 3241 patients with dementia and healthy aged controls; 13,152 variants were classified by likelihood of pathogenicity. We identified 354 deleterious variants (DV, 12.6% of patients); 39 were novel DVs. Age at clinical onset, clinical syndrome and family history each strongly predict the likelihood of finding a DV, but healthcare setting and gender did not. DVs were frequently found in genes not usually associated with the clinical syndrome. Patients recruited from primary referral centres were compared to those seen at higher-level research centres and a national clinical neurogenetic laboratory; rates of discovery were comparable, making selection bias unlikely and the results generalizable to clinical practice. We estimated penetrance of DVs using large-scale online genomic population databases and found 71 with evidence of reduced penetrance. Two DVs in the same patient were found more frequently than expected. These publicly-available data should provide a basis for informed counselling and clinical decision making
Counteractive effects of antenatal glucocorticoid treatment on D1 receptor modulation of spatial working memory
RATIONALE: Antenatal exposure to the glucocorticoid dexamethasone dramatically increases the number of mesencephalic dopaminergic neurons in rat offspring. However, the consequences of this expansion in midbrain dopamine (DA) neurons for behavioural processes in adulthood are poorly understood, including working memory that depends on DA transmission in the prefrontal cortex (PFC). OBJECTIVES: We therefore investigated the influence of antenatal glucocorticoid treatment (AGT) on the modulation of spatial working memory by a D1 receptor agonist and on D1 receptor binding and DA content in the PFC and striatum. METHODS: Pregnant rats received AGT on gestational days 16-19 by adding dexamethasone to their drinking water. Male offspring reared to adulthood were trained on a delayed alternation spatial working memory task and administered the partial D1 agonist SKF38393 (0.3-3 mg/kg) by systemic injection. In separate groups of control and AGT animals, D1 receptor binding and DA content were measured post-mortem in the PFC and striatum. RESULTS: SKF38393 impaired spatial working memory performance in control rats but had no effect in AGT rats. D1 binding was significantly reduced in the anterior cingulate cortex, prelimbic cortex, dorsal striatum and ventral pallidum of AGT rats compared with control animals. However, AGT had no significant effect on brain monoamine levels. CONCLUSIONS: These findings demonstrate that D1 receptors in corticostriatal circuitry down-regulate in response to AGT. This compensatory effect in D1 receptors may result from increased DA-ergic tone in AGT rats and underlie the resilience of these animals to the disruptive effects of D1 receptor activation on spatial working memory
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
The widening spectrum of C9ORF72-related disease; genotype/phenotype correlations and potential modifiers of clinical phenotype
The GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common cause of familial amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTLD) and ALS–FTLD, as well as contributing to sporadic forms of these diseases. Screening of large cohorts of ALS and FTLD cohorts has identified that C9ORF72-ALS is represented throughout the clinical spectrum of ALS phenotypes, though in comparison with other genetic subtypes, C9ORF72 carriers have a higher incidence of bulbar onset disease. In contrast, C9ORF72-FTLD is predominantly associated with behavioural variant FTD, which often presents with psychosis, most commonly in the form of hallucinations and delusions. However, C9ORF72 expansions are not restricted to these clinical phenotypes. There is a higher than expected incidence of parkinsonism in ALS patients with C9ORF72 expansions, and the G4C2 repeat has also been reported in other motor phenotypes, such as primary lateral sclerosis, progressive muscular atrophy, corticobasal syndrome and Huntington-like disorders. In addition, the expansion has been identified in non-motor phenotypes including Alzheimer’s disease and Lewy body dementia. It is not currently understood what is the basis of the clinical variation seen with the G4C2 repeat expansion. One potential explanation is repeat length. Sizing of the expansion by Southern blotting has established that there is somatic heterogeneity, with different expansion lengths in different tissues, even within the brain. To date, no correlation with expansion size and clinical phenotype has been established in ALS, whilst in FTLD only repeat size in the cerebellum was found to correlate with disease duration. Somatic heterogeneity suggests there is a degree of instability within the repeat and evidence of anticipation has been reported with reducing age of onset in subsequent generations. This variability/instability in expansion length, along with its interactions with environmental and genetic modifiers, such as TMEM106B, may be the basis of the differing clinical phenotypes arising from the mutation
The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerosis
The discovery that a hexanucleotide repeat expansion in C9orf72 is the most numerous genetic variant of both amyotrophic lateral sclerosis and frontotemporal dementia has opened a rapidly growing field, which may provide long hoped for advances in the understanding and treatment of these devastating diseases. In this review we describe the various phenotypes, clinical and pathological, associated with expansion of C9orf72, which go beyond amyotrophic lateral sclerosis and frontotemporal dementia to include neurodegeneration more broadly. Next we take a step back and summarize the current understanding of the C9orf72 expansion and its protein products at a molecular level. Three mechanisms are prominent: toxicity mediated directly by RNA transcribed from the repeat; toxicity mediated by dipeptide repeat proteins translated from the repeat sequence; and haploinsufficiency resulting from reduced transcription of the C9orf72 exonic sequence. A series of exciting advances have recently described how dipeptide repeat proteins might interfere with the normal role of the nucleolus in maturation of RNA binding proteins and in production of ribosomes. Importantly, these mechanisms are unlikely to be mutually exclusive. We draw attention to the fact that clinical and pathological similarities to other genetic variants without a repeat expansion must not be overlooked in ascribing a pathogenic mechanism to C9orf72-disease. Finally, with a view to impact on patient care, we discuss current practice with respect to genetic screening in patients with and without a family history of disease, and the most promising developments towards therapy that have been reported to date
Impact of Optimized Breastfeeding on the Costs of Necrotizing Enterocolitis in Extremely Low Birthweight Infants
To estimate risk of NEC for ELBW infants as a function of preterm formula and maternal milk (MM) intake and calculate the impact of suboptimal feeding on NEC incidence and costs
The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients
The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation
- …