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Abstract
Rationale Antenatal exposure to the glucocorticoid dexa-
methasone dramatically increases the number of mesence-
phalic dopaminergic neurons in rat offspring. However, the
consequences of this expansion in midbrain dopamine (DA)
neurons for behavioural processes in adulthood are poorly
understood, including working memory that depends on DA
transmission in the prefrontal cortex (PFC).
Objectives We therefore investigated the influence of antena-
tal glucocorticoid treatment (AGT) on the modulation of spa-
tial working memory by a D1 receptor agonist and on D1
receptor binding and DA content in the PFC and striatum.
Methods Pregnant rats received AGTon gestational days 16–
19 by adding dexamethasone to their drinking water. Male
offspring reared to adulthood were trained on a delayed alter-
nation spatial working memory task and administered the par-
tial D1 agonist SKF38393 (0.3–3 mg/kg) by systemic injec-
tion. In separate groups of control and AGT animals, D1 re-
ceptor binding and DA content were measured post-mortem
in the PFC and striatum.

Results SKF38393 impaired spatial working memory perfor-
mance in control rats but had no effect in AGT rats. D1 binding
was significantly reduced in the anterior cingulate cortex,
prelimbic cortex, dorsal striatum and ventral pallidum of
AGT rats compared with control animals. However, AGT
had no significant effect on brain monoamine levels.
Conclusions These findings demonstrate that D1 receptors in
corticostriatal circuitry down-regulate in response to AGT.
This compensatory effect in D1 receptors may result from
increased DA-ergic tone in AGT rats and underlie the resil-
ience of these animals to the disruptive effects of D1 receptor
activation on spatial working memory.

Keywords Prefrontal cortex . Dopamine . Dopamine
receptors . Memory . Schizophrenia

Introduction

Stress during critical periods of development has widely
recognised detrimental effects on maturing neuronal pop-
ulations in the brain with implications for the aetiology of
various clinical disorders (Gillies et al. 2014; Slotkin et al.
2006; Spear 2000). Thus, stress during the perinatal peri-
od is thought to play a contributory role in depression,
attention-deficit hyperactivity disorder (ADHD), schizo-
phrenia and other psychiatric disorders (Debnath et al.
2015; Khashan et al. 2008; Koenig et al. 2002; Van den
Bergh et al. 2005). Findings from structural and function-
al imaging studies point to multifaceted loci of such dis-
orders, including the limbic corticostriatal systems and
abnormalities in dopamine (DA) and serotonin (5-HT)
neurotransmission (Castellanos and Tannock 2002; Catts
et al. 2013; Spear 2000; Van den Bergh et al. 2005).
Indeed, abnormal DA receptor signalling in the prefrontal
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cortex (PFC) may underlie the impaired working memory
performance of schizophrenic patients (Abi-Dargham
et al. 2002; Goldman-Rakic et al. 2004).

Convergent research findings in non-human primates
and rodents support a role of PFC DA in spatial working
memory (Brozoski et al. 1979; Bubser and Schmidt 1990;
Simon 1981). PFC-dependent functions depend on the
local level of D1 receptor activation with low and high
levels of D1 receptor stimulation impairing cognitive per-
formance (Granon et al. 2000; Mizoguchi et al. 2009;
Sawaguchi and Goldman-Rakic 1991; Verma and
Moghaddam 1996; Zahrt et al. 1997). Such findings sug-
gest an underlying U-shaped function, consistent with the
proposed role of DA acting on D1 receptors in modulating
the spatial tuning properties of PFC neurons (Sawaguchi
et al. 1988; Vijayraghavan et al. 2007; Williams and
Goldman-Rakic 1995; Yang and Seamans 1996).
Collectively, these findings accord with the view that the
PFC is modulated by stress and arousal through D1

receptor-dependent mechanisms (Robbins and Arnsten
2009).

We previously reported that antenatal glucocorticoid
treatment (AGT) with the synthetic glucocorticoid, dexa-
methasone, during the late gestational period dramatically
increased the population size of midbrain DA neurons in
the ventral tegmental area and substantia nigra zona
compacta of adult rats (McArthur et al. 2005; McArthur
et al. 2007). Dexamethasone was administered non-
invasively via the dam’s drinking water on gestational
days 16–19. In a recent study, using the same procedure,
we found that AGT produced profound, sexually dimor-
phic changes in markers of DA neurotransmission but had
surprisingly negligible effects on several appetitive behav-
iours known to depend on the mesolimbic DA system,
i n c l u d i n g P a v l o v i a n c o n d i t i o n e d a p p r o a c h ,
psychostimulant-induced locomotor activity and intrave-
nous cocaine self-administration (Virdee et al. 2014).
Based on the apparent behavioural resilience in AGT an-
imals, we hypothesised that neural compensatory mecha-
nisms, including a dysregulation of D1 receptors in the
striatum (Virdee et al. 2014), were sufficient to overcome
the expansion of DA neurons in adult rats exposed to
dexamethasone in utero.

In the present study, we investigated the hypothesis that
cognitive functions that depend on D1 receptor mechanisms
may be particularly susceptible to AGT. We therefore investi-
gated the performance of AGT rats reared to adulthood on a
delayed alternation spatial workingmemory task, known to be
sensitive to disruption by excessive D1 receptor activation
(Zahrt et al. 1997). We predicted that increased dopaminergic
tone in the PFC may lead to compensatory reductions in D1

receptors in this region with concomitant effects on the mod-
ulation of spatial working memory by a D1 receptor agonist.

Methods

Subjects

Time-mated female Sprague-Dawley rats (Harlan Olac,
Bicester, UK) were kept under a 12/12-h reversed light–dark
cycle (lights off at 07.00 h) in holding rooms with controlled
temperature (21–23 °C) and humidity (63 %). Standard rat
chow and water were available ad libitum. Antenatal gluco-
corticoid treatment was carried out on gestational days 16–19.
During this time, sodium dexamethasone phosphate (Faulding
Pharmaceuticals, Royal Leamington Spa, UK) was added to
the drinking water at a concentration of 0.5 μg/ml. Control
dams were given unadulterated drinking water for the entire
duration of their pregnancies.

We previously estimated that this procedure for administer-
ing dexamethasone delivers a daily dose of approximately
75 μg/kg to the dam (McArthur et al. 2005; McArthur et al.
2006; Theogaraj et al. 2005), a dose comparable to that used in
perinatal medicine in cases of threatened premature birth (Jobe
and Soll 2004). However, based on previous pharmacokinetic
data (Varma 1986), plasma levels of dexamethasone in the
developing foetus are likely to be lower than levels that pro-
mote foetal lung maturation (Samtani et al. 2006a, b). Since
the developing rat brain does not express detectable levels of
the multi-drug resistant gene product P-glycoprotein, which
extrudes dexamethasone from the brain (Matsuoka et al.
1999), but does express glucocorticoid receptors from embry-
onic day 15.5 (Diaz et al. 1998), late-gestation dexamethasone
is likely to have acted directly in the foetal rat brain.

To offset litter-of-origin effects, the number of male pups
taken from each litter to form the experimental groups was
limited to two. At 2 months of age, rats were housed in groups
of four in each cage. Food was restricted to 15 g of laboratory
chow a day (Purina, UK) 1 week prior to the start of behav-
ioural testing. This commenced when animals were 3 months
of age. All behavioural testing was performed during the light
phase of the light–dark cycle (between 13.00 and 17.00 h).
Rats were fed after behavioural testing with a quantity of food
sufficient tomaintain 85–90% free feeding weight. All animal
procedures were carried out in compliance with the United
Kingdom Animals (Scientific Procedures) Act of 1986 and
in accordance with local ethical guidelines at Cambridge
University.

Delayed alternation task

AT-maze was used to assess delayed alternation in control and
AGT rats. The maze was elevated 50 cm above the floor and
constructed from wood with a stem arm and two side goal
arms, bounded by a perimeter ledge 2 cm high to prevent
animals falling from the apparatus. A food well was located
at the end of each goal arm. The goal arms were separated by a
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fixed central partition that extended 25 cm into the start arm.
During information trials, a wooden block 2-cm high was
used to block one of the goal arms. Hot water was used to
clean the apparatus prior to testing each animal.

Following habituation during a single 20-min session
where rats could freely explore the apparatus, subjects
underwent alternation shaping, in which one goal arm
was blocked, thus forcing the rat to enter and consume a
reward pellet from the open arm (an information run).
Once the rat had consumed the reward pellet, it was gent-
ly picked up and immediately returned to the starting
point again for a second run (choice run) in which free
access was allowed to both goal arms but with only the
previously blocked arm being baited with reward.
Alternation shaping without delay consisted of 10 trials
with sessions conducted daily for 14 consecutive days.
Each trial was independent and consisted of two phases:
a rewarded forced run followed by a free choice alterna-
tion run. Each session consisted of an equal number of
pseudorandom forced entries into the left and right goal
arms, with no more than two consecutive forced entries
into the same arm. A correct choice was scored if the rat
entered the baited (previously blocked) arm in the choice
run and consumed the reward pellet, whereas an error was
scored if the rat visited the same arm in the choice run as
that entered in the forced trial. Any rat failing to make the
information run within 45 s was removed from the T-maze
and tested again. Training was continued in this manner
until the rats attained a stable level of performance. The
latency from start arm to the consumption of the reward
pellet for both the information run and choice run (wheth-
er correct or incorrect) was recorded using a digital stop-
watch by an observer blind to the experimental groups.

On completion of the forced alternation training, rats were
trained on a discrete, paired trial version of the delayed alter-
nation task. Delayed alternation testing was identical to alter-
nation shaping except that a delay period of 90 s was inter-
posed between the information run and the choice run. During
the delay interval, the rat was returned to a holding cage con-
taining three other cage mates that were being tested on the
same day. The delay or retention interval was decided on the
basis of preliminary validation experiments that revealed that
delays of 30 or 60 s were insufficient to produce reliable
deficits in alternation performance. In pilot studies, we also
established that a dose of 0.3 mg/kg SKF38393 was insuffi-
cient tomodulate performance on this task in control and AGT
animals.

Drug administration

The partial D1/5 receptor agonist SKF38393 was pur-
chased from TOCRIS Biosciences (UK) and dissolved in
0.9 % saline. It was administered by intraperitoneal

injection (1 ml/kg) at doses of 1 and 3 mg/kg using a
randomised Latin square design. Each rat underwent pre-
injection runs for which there were 12 trials given in a
random order (3 left blocks and 3 right blocks with no
delay; 3 left blocks and 3 right blocks with a 90-s delay).
Thereafter, rats were injected with vehicle or SKF38393
and returned to their holding cages for 30 min. They were
then tested on the T-maze during 12 post-injection trials,
as described above. Each dose of SKF38393 (or vehicle)
was administered after a 48-h washout period. Since
SKF38393 produced no discernible effect on delayed al-
ternation in AGT rats, unlike controls, we also tested the
effects of a higher dose of this compound (10 mg/kg) in
AGT animals.

Open-field locomotor activity

The open-field test was used to measure spontaneous locomo-
tor activity. The test chamber (San Diego Instruments, USA)
was fitted with infrared photocell beams with the following
dimensions: 40 cm (W) × 40 cm (D) × 37.5 cm (H). Animals
were first habituated to the apparatus on two consecutive daily
sessions, with each session lasting 90 min. The effects of
SKF38393 (and saline) were assessed the next day with beam
breaks recorded in bins of 5 min over a 90-min period, using a
randomised Latin square design and a 48-h washout period.
SKF38393 was administered by intraperitoneal injection at 1,
3, and 10 mg/kg in a volume of 1 ml/kg, 30 min before the
animals were placed in the open-field apparatus.

Receptor autoradiography

Control and AGT rats were sacrificed by decapitation and
their brains removed and prepared for quantification of
D1 receptors using the D1/5 ligand [3H]-SCH23390, ac-
cording to a previously published protocol (McArthur
et al. 2007). Autoradiographic films were developed and
converted to digital form using an MCID Core system
attached to a CoolSNAPProcf camera (Interfocus
Imaging Ltd., Cambridge, UK). Systematic random sam-
pling within the specified brain regions was performed for
densitometric analysis, and average values from six dis-
tinct brain sections per region per rat were used to obtain
group means. Regions of interest included the anterior
cingulate cortex (ACg), prel imbic cortex (PrL),
infralimbic cortex (IL), dorsal striatum (dST), ventral stri-
atum (vST: core and shell combined) and the ventral
pallidum (vPal).

Post-mortem analysis of monoamines

Snap-frozen brains were sliced on a JungCM3000 cryostat
(Leica Microsystems Ltd., Milton Keynes, UK) into
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150-μm-thick sections. These were thaw-mounted onto
glass slides and circular micro-punches of 0.75 mm in
diameter were taken bilaterally from the infralimbic cor-
tex, prelimbic cortex, cingulate cortex, orbitofrontal cor-
tex, nucleus accumbens core, nucleus accumbens shell
and dorsal striatum. Tissue aliquots were stored in vials
at −80 °C until further processing. At the time of process-
ing, they were thawed and homogenised in 75 μl of 0.2 M
perchloric acid using a hand-held mechanised pellet pestle
(Kimble-Kontes, Vineland, NJ, USA). The tissue suspen-
sions were then centrifuged at 6000 rpm for 10 min at
4 °C. DA, NA and 5-HT were determined by reversed
phase high-performance liquid chromatography (HPLC)
with electrochemical detection. In each case, 25 μl of
sample was injected onto a C18 ODS 3-μm analytical
column (100 mm length × 4.6 mm i.d., Hypersil Elite,
Phenomenex, UK) with a mobile phase (citric acid
31.9 g/L, sodium acetate 2.0 g/L, 1-octanesulfonic acid
460 mg/L, EDTA 30 mg/L and methanol 150 ml/L) de-
livered at 0.8 ml/min. Monoamines were quantified using
an ESA Coulochem II detector and an analytical cell
(ESA model 5014) with two electrodes in series. The po-
tential of the first (reducing) electrode was held at
−200 mV, while the potential of the second (oxidising)
electrode was set to +250 mV relative to a platinum ref-
erence electrode. The resultant signal from the second
electrode was integrated using Dionex Chromeleon soft-
ware. Neurochemical levels were calculated relative to
external standards and expressed as picomole per milli-
gram of wet tissue weight.

Statistical analysis

Behavioural data were analysed using repeated-measures
ANOVA (SPSS, version 21, IBM) with delay (two levels:
no delay; 90 s) and SKF38393 dose (three levels: vehicle,
1 and 3 mg/kg) as within-subject’s factors and group (two
levels: control and AGT) as a between-subject’s factor.
Acquisition data (% correct) were analysed with day (14
levels) and group (2 levels) as the within- and between-
subject’s factors, respectively. Significant interactions be-
tween factors were analysed further by ANOVA and post
hoc Dunnett’s tests, where appropriate. Mauchly’s test of
sphericity was applied and the degrees of freedom adjust-
ed using the Huynh-Feldt epsilon when the assumption of
sphericity was violated. Autoradiography and HPLC data
were analysed by Student’s t tests comparing averaged
values from various brain regions of AGT male rats to
the values obtained from corresponding brain regions of
control rats. Data were pooled across the left and right
hemispheres. A criterion level of α = 0.05 was used to
interpret main effects, interactions and post hoc tests.

Results

Spatial delayed alternation

The acquisition and performance of control (n = 12) and AGT
(n = 14) rats on the delayed alternation spatial working task
are shown in Fig. 1. Choice accuracy during forced alternation
training increased progressively during each daily session
(session: F(13, 351) = 14.735, p < 0.01: Fig. 1a); however, this
improvement was no different between control and AGT rats
(group: F(1, 27) = 0.858, p = 0.362). Indeed, both groups of
animals attained comparable and stable levels of accuracy of
approximately 80 % by the last 3 days of training (control
79.5 ± 3.6 % correct; AGT 84.6 ± 3.1 % correct, p = 0.289:
Fig. 1b). There were also no statistically significant differ-
ences in response latencies between control and AGT rats
during the information and choice trials (Fig. 1c) with aver-
aged latencies for the information and choice trials of 8.2 ± 1.2
and 6.7 ± 0.8 s and 6.0 ± 0.5 and 6.3 ± 0.9 s for control and
AGT rats, respectively. During delayed alternation trials
where a 90-s delay was imposed between the forced and
choice run trials, performance accuracy declined significantly
compared with the zero delay condition (F(1, 11) = 62.38,
p < 0.001: Fig. 1d). However, there was no significant main
effect of group or group × delay interaction indicating that at
baseline AGT had no significant effect on spatial working
memory in the delayed alternation task.

Effect of SKF38393 on delayed alternation performance

Figure 2 summarises the effects of the D1/5 receptor agonist
SKF38393 on the delayed alternation task. A global analysis
of choice accuracy following SKF38393 administration re-
vealed a main effect of retention interval (F(1, 8) = 86.83,
p < 0.01), a significant interaction between group and
SKF38393 dose (F(3, 24) = 4.26, p = 0.044) and a significant
interaction between group, SKF38393 dose and retention in-
terval (F(3, 24) = 3.81, p = 0.023). Pair-wise comparisons dur-
ing the 90-s delay period showed that relative to the vehicle
control group the highest dose of SKF38393 (3 mg/kg) sig-
nificantly impaired choice accuracy in control animals but not
AGT animals (p < 0.01 vs saline; p < 0.01 control vs AGT).
By contrast, this dose of SKF38393 produced a trend signif-
icant improvement in the choice accuracy of AGT rats
(p = 0.081 vs saline; p = 0.025 vs pre-injection baseline).
Distinct from AGT rats, SKF38393 also impaired choice ac-
curacy in control rats during the zero delay condition reaching
significance at the 3-mg/kg dose level (p < 0.01 vs saline). As
SKF38393 had no detectable effect on the behavioural perfor-
mance of AGT rats, we also injected a higher dose of this
compound (10 mg/kg). SKF38393 was again without effect
in AGT rats (choice accuracy ± SEM, 90 s delay = 84 ± 4 %)
but impaired performance in control rats with many subjects
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failing to complete a single correct trial. These observations
indicate that spatial working memory in AGT rats is remark-
ably resistant to disruption by a D1/5 receptor agonist com-
pared with control rats. In addition, global analysis of correct
choice latencies following SKF38393 administration revealed
no significant main effects or interactions of drug treatment,
retention interval or group (Fig. 2b).

We next investigated whether the impairing effects of
SKF38393 on spatial working memory performance in con-
trol rats were due to nonspecific behavioural processes. To
examine this possibility, we assessed the effects of
SKF38393 on open-field locomotor activity in control and
AGT rats. Figure 3a shows the temporal profile of locomotor
activity in animals injected with SKF38393. The main analy-
sis revealed a main effect of dose (F(3, 30) = 4.41, p = 0.012)
and time (F(17, 170) = 17.35, p < 0.001) but no main effect of
group or significant interactions. Collapsing the data as a func-
tion of dose (Fig. 3b) revealed that a dose of 10 mg/kg
SKF38393 produced a mild stimulant effect compared with

vehicle-treated animals (p = 0.008). Notably, however, lower
doses of SKF38393, which impaired working memory perfor-
mance in control animals, did not differentially affect locomo-
tor activity relative to the AGT group.

D1 receptor autoradiography and post-mortem
neurochemistry

Binding densities of [3H]-SCH23390 in the medial PFC, stri-
atum and ventral pallidum are shown in Fig. 4a, b. AGT pro-
duced a significant reduction in D1/5 receptor binding com-
pared with control adult rats in the majority of regions assayed
(all p < 0.01) except the infralimbic cortex (p = 0.088) and
ventral striatum (p = 0.063). However, levels of the mono-
amines (NA, DA and 5-HT) and primary metabolites
(DOPAC and 5-HIAA) were not significantly affected by an-
tenatal dexamethasone exposure in any of the brain regions
examined. In addition, DA or 5-HT turnover rates were not
significantly affected by this manipulation (Table 1).

Fig. 1 Discrete paired trials forced alternation T-maze task. aAcquisition
of the forced alternation task in AGT males (closed symbols) and control
males (open symbols) expressed as a percent correct score. Data are
means ± 1 SEM (n = 14 control males and n = 15 AGT males).
Repeated-measures ANOVA revealed a significant main effect of
session (F(13, 351) = 14.74, p < 0.01) with no significant between-group
difference in percent correct alternation score. b Percent correct accuracy
averaged over the last three training sessions (sessions 12–14) of forced

alternation training. Data are means ± 1 SEM of correct scores expressed
as a percentage of 30 paired trials. c Latencies to complete the forced
information run and the correct choice run during the final three training
sessions. AGT males (closed bars); control males (open bars). d Percent
choice accuracy following the interposition of a 90-s delay interval
between the information and choice runs. Both groups exhibited a
diminished accuracy of performance following the long retention
interval (**p < 0.01). Control group (n = 6); AGT group (n = 7)
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Discussion

We report the novel finding that rats exposed to AGT are
resilient as adults to the disruptive effects of a D1/5 receptor
agonist on the performance of a spatial working memory task.
Dopamine D1/5 receptor activation appeared, if anything, to
facilitate the retention of working memory in this group of
animals, which corresponded with diminished D1/5 receptor
binding in the anterior cingulate cortex, prelimbic cortex, dor-
sal striatum and ventral pallidum. Although D1/5 receptor dys-
regulation presumably resulted in part from sustained

perturbations inmesencephalic DA neurotransmission, we ob-
served no significant alterations in monoamine levels and
turnover in the PFC and striatum. Our findings demonstrate
that AGT induces long-lasting abnormalities in the modula-
tion of spatial working memory by D1 receptors.
Theoretically, our results are consistent with a rightward shift
in an underlying U-shaped function regulating D1 receptor
spatial processing, possibly mediated within the PFC as a
consequence of AGT (Robbins and Arnsten 2009;
Vijayraghavan et al. 2007). However, since SKF38393 also
impaired choice accuracy in control rats during the zero delay
condition, this compound may have disrupted aspects of
working memory performance separate from mnemonic pro-
cessing per se.

We reported previously that late gestational exposure to
dexamethasone increases the density of DA inputs to the ven-
tral and dorsal striatum and causes profound changes in the
regulation of DA release and D1 and D2 receptors in these
regions (Virdee et al. 2014). These neurobiological changes
were often sexually dimorphic and were not accompanied by
differential effects on a broad range of psychomotor and ap-
petitive behaviours known to depend on the mesolimbic DA
system. We explained these findings by enduring molecular
adaptations within the subcortical DA systems that we
hypothesised were sufficient to compensate for the pro-
nounced increase in DA inputs in the striatum of AGT rats.
In the present study, we probed the mesocortical DA system
using a delayed alternation spatial working memory task
(Bubser and Schmidt 1990). We based our experimental ap-
proach on an earlier report showing excessive D1 receptor
stimulation in the PFC to disrupt spatial working memory
performance in rats (Zahrt et al. 1997). Specifically, infusions
of the full D1 receptor agonist SKF81297 into the dorsal PFC
produced a dose-related impairment in spatial delayed alter-
nation; this effect was blocked by the D1 receptor antagonist
SCH23390, which itself only impaired performance at higher
doses. Interestingly, SKF81297 was more disruptive to spatial
working memory when infused in the prelimbic cortex than
more anterior sites. As acknowledged by the authors, infu-
sions of SKF81297 at this anterior–posterior level probably
diffused to adjacent sites as well, including the infralimbic
cortex. Indeed, our own analysis found that localised infusions
of a D1 antagonist in the prelimbic cortex track dorsally to
involve the anterior cingulate cortex (Granon et al. 2000).
Thus, the precise brain locus in rats underlying the modulation
of spatial delayed alternation by D1 receptor compounds is
unclear. However, the magnitude of dopamine release in the
medial PFC, involvingmainly the prelimbic cortex, was found
to predict the accuracy of memory retrieval on a spatial de-
layed response task (Phillips et al. 2004).

In the present study, AGT rats were resistant to the disruptive
effects of SKF38393 on spatial delayed alternation. AGTanimals
continued to showhigh levels of choice accuracy even at the high

Fig. 2 Effect of D1/5 receptor activation on delayed alternation
performance. a Control (n = 5; open bars) and AGT (n = 5; closed
bars) rats were pre-treated with 0.9 % saline or the D1/5 receptor
agonist SKF38393 30 min before being tested on the T-maze
alternation task with trials consisting 0- or 90-s delays. Data are group
means ± 1 SEM. **p < 0.01 (vs 0 mg/kg/saline); #p < 0.05 (control vs
AGT). b Lack of effect of SKF38393 on response latencies for correct
choice trials before and after the 90-s retention interval (90 s). A baseline
level of performance was first established by testing rats on the T-maze
before systemic injections of saline or SKF38393 (‘preinject’). Data are
group means for control (n = 5; open bars) and AGT (n = 5; closed bars)
rats
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dose of 10 mg/kg, which strongly impaired performance in con-
trol animals. Parsimoniously, this resilience to excessive D1 re-
ceptor stimulation may be a consequence of down-regulated D1
receptors throughout the forebrain of AGT rats. As D1 receptors
are expressed on neurons intrinsic to fronto-striato-pallidal cir-
cuitry, postsynaptic to dopamine inputs (Strange et al. 1983), the
down-regulation in D1 receptors we observed may have been
driven by a compensatory response to the expansion of midbrain
dopamine neurons inAGTrats (McArthur et al. 2005). However,
the precise mechanism coupling the presumed increase in dopa-
mine activity in the PFC andD1 receptor dysregulation is unclear
since in an earlier study we found that dopamine release in the
ventral striatum was no different between control and AGT rats,
despite D1 receptors also being down-regulated in this region

(Virdee et al. 2014). This may reflect the tight homeostatic con-
trol over dopamine release in this region and perhaps also the
PFC, but a further study would be needed to directly monitor
dopamine release in the PFC, both under basal and task-related
conditions. This is warranted as the ex vivo measures used in the
present study were presumably insufficiently sensitive to detect
differences in dopamine function in the various regions investi-
gated. However, a previous study reported a small (approximate-
ly 10 %) increase in dopamine concentration in the adult rat
cerebral cortex following AGT by daily subcutaneous injections
of dexamethasone at gestational days 17 to 19 (Slotkin et al.
2006). Nevertheless, it does appear that neurochemical and be-
havioural deficits only overtly manifest in AGT rats following
acute provocation of the dopamine systems. Thus, systemic

Fig. 3 Effect of systemic SKF38393 on open-field locomotor activity. a
Ambulatory locomotor activity in control n = 5; open bars) and AGT
(n = 5; closed bars) rats following saline and increasing doses of the D1/5
receptor agonist SKF38393. Data are means ± 1 SEM. b Locomotor

activity averaged over the 90-min testing period. ANOVA indicated a
main effect of dose (F(3, 30) = 4.405), p = 0.012) and a significant
difference (**p < 0.01) between rats injected with 10 mg/kg SKF38393
and saline (control and AGT rats combined)

Fig. 4 D1 receptor
autoradiography. Quantitative
comparison of radioligand
binding to D1-type receptors in
the anterior cingulate cortex
(ACg), prelimbic cortex (PrL),
infralimbic cortex (IL), dorsal
striatum (dST), ventral striatum
(vST) and ventral pallidum (vPal)
in control (n = 6; open bars) and
AGT (n = 6; closed bars) rats.
Data are means ± 1 SEM.
**p < 0.01 (control vs AGT)
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injections of D-amphetamine increased striatal dopamine release
to a significantly greater extent in AGT rats than control rats
(Virdee et al. 2014). Similarly, in the present study, behavioural
differences between control and AGT rats only emerged when
D1 receptors were directly activated. These findings suggest that
adaptive variations within the dopamine systems, induced by
AGT, are especially vulnerable to acute perturbations by selective
pharmacological agents.

There are several limitations to our work that merit discus-
sion. Firstly, the receptor binding studies were conducted in a
separate cohort of rats to those used in the behavioural phar-
macology experiments. Further studies are needed to investi-
gate whether behavioural training and differing periods of
food restriction altered the behavioural effects of SKF38393,
as suggested by other studies (Carr et al. 2003; Haberny et al.
2004). Secondly, only males were tested in the present study,
primarily to circumvent the complication of variations in hor-
mones during the oestrous cycle. It is therefore unclear wheth-
er the present findings would generalise to females. This is
important as there is strong evidence that prenatal stress and
overexposure to glucocorticoids leads to diverse sexually di-
morphic effects on the developing brain (Hiroi et al. 2016;
McArthur et al. 2007; McArthur et al. 2016; Zuloaga et al.
2011; Zuloaga et al. 2012). Thirdly, it is possible that
SKF38393 exerted off-target effects at non-dopaminergic re-
ceptors. However, unlike other D1 receptor-selective phenyl-
benzazepines (e.g. SCH23390), SKF38393 has a low affinity
for 5-HT receptors (Neumeyer et al. 2003), suggesting that the
effects of SKF38393 in the present study were most likely
mediated by D1/5 receptors. Nevertheless, further studies
would be needed to investigate local effects of D1 receptor
activation in the PFC, including possible cognitive enhancing
effects on spatial working memory (Chudasama and Robbins
2004). Finally, it is possible that AGTovertly altered maternal
pup-directed behaviour. However, this appears unlikely since
a concentration of dexamethasone almost twice as high as that
used in the present study had no detrimental effects on mater-
nal pup behaviour (Hauser et al. 2006).

Although our results replicate earlier findings showing ex-
cessive D1 receptor stimulation to impair spatial working
memory performance (Zahrt et al. 1997), we were unable to
definitively show that SKF38393 disrupts performance in a
delay-dependent manner since retention accuracy also de-
clined during the zero delay condition. However, this may
reflect the fact that a zero delay is nominal and difficult in
practice to achieve using our non-automated delayed alterna-
tion task. The real delay was likely to be in the order of several
seconds, and this would accord with the shortest delay of 5 s
used by Zahrt et al. but still on a timescale known to engage
PFC mechanisms (Lapish et al. 2009). Further, SKF38393
produced no obvious differential effects on either open-field
locomotor activity or response latencies on the delayed alter-
nation task suggesting that this compound was not generallyT
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disruptive to behavioural output. Nevertheless, further studies
would be necessary to investigate the mechanism underlying
the impairing effects of SKF38393 on delayed alternation per-
formance in control rats, which may involve effects on atten-
tion (Passetti et al. 2003), the encoding and temporary storage
of information, to the retrieval and flexibility of trial-unique
information (Mizumori et al. 1987).

As well as affecting central dopamine pathways, prenatal
glucocorticoid exposure exerts a wide spectrum of effects on
the developing brain (Matthews 2001). Studies in rodents and
primates have shown that foetal glucocorticoid exposure and
prenatal stress both cause marked abnormalities in gene ex-
pression, receptor composition and structural markers in the
hippocampus and PFC (Berger et al. 2002; Uno et al. 1994;
Uno et al. 1990). Thus, the resistance of AGT rats to the
impairing effects of SKF38393 on working memory perfor-
mance may be mediated by mechanisms separable from ef-
fects on dopamine neurotransmission in the PFC. For exam-
ple, AGT has been shown to alter serotonin turnover, receptor
binding and transporter function in a dose- and region-specific
manner (Slotkin et al. 2006; Slotkin and Seidler 2010).
Additionally, changes in astro-glial morphology have been
implicated in hippocampal remodelling following AGT
(McArthur et al. 2016; Shende et al. 2015). Since intra-
hippocampal infusions of D1/D5 receptor agonists improve
performance on radial maze working memory tasks (Packard
and White 1991) that depend on the hippocampus (Spowart-
Manning and van der Staay 2004), it is possible that our find-
ings were influenced by drug interactions in the hippocampus.
It is also possible that different processes were recruited for
optimal task performance (e.g. attention and other executive
functions) and that these processes were differentially suscep-
tible to modulation by SKF38393.

In conclusion, the present study shows that excess gluco-
corticoid exposure during the late gestational stage decreases
the sensitivity of rats to a D1 receptor agonist on a delayed
alternation working memory task. Our results are consistent
with a rightward shift in a hypothetical “U”-shaped function
underlying the assumed modulation of this task by PFC do-
pamine. Our findings highlight the profound consequences for
brain development of prenatal stress hormones and suggest a
mechanism whereby AGT animals may be resilient to stress
and anxiogenic stimuli as adults, which generally impair de-
layed alternation performance (Arnsten 1997; Murphy et al.
1996a; Murphy et al. 1996b; Sahakian et al. 1985). Finally,
and more speculatively, our findings may be relevant to the
variability of therapeutic drug responses in various
neurodevelopmental brain disorders (Hermens et al. 2005).
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