48 research outputs found

    A benchmark for evaluating software engineering techniques for improving medical processes

    Full text link
    The software engineering and medical informatics communi-ties have been developing a range of approaches for reason-ing about medical processes. To facilitate the comparison of such approaches, it would be desirable to have a set of medical examples, or benchmarks, that are easily available, described in considerable detail, and characterized in terms of the real-world complexities they capture. This paper presents one such benchmark and discusses a list of desider-ata that medical benchmarks can be evaluated against

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Analyzing medical processes

    No full text

    Nurses\u27 behaviors and visual scanning patterns may reduce patient identification errors

    No full text
    Patient identification (ID) errors occurring during the medication administration process can be fatal. The aim of this study is to determine whether differences in nurses\u27 behaviors and visual scanning patterns during the medication administration process influence their capacities to identify patient ID errors. Nurse participants (n = 20) administered medications to 3 patients in a simulated clinical setting, with 1 patient having an embedded ID error. Error-identifying nurses tended to complete more process steps in a similar amount of time than non-error-identifying nurses and tended to scan information across artifacts (e.g., ID band, patient chart, medication label) rather than fixating on several pieces of information on a single artifact before fixating on another artifact. Non-error-indentifying nurses tended to increase their durations of off-topic conversations-a type of process interruption-over the course of the trials; the difference between groups was significant in the trial with the embedded ID error. Error-identifying nurses tended to have their most fixations in a row on the patient\u27s chart, whereas non-error-identifying nurses did not tend to have a single artifact on which they consistently fixated. Finally, error-identifying nurses tended to have predictable eye fixation sequences across artifacts, whereas non-error-identifying nurses tended to have seemingly random eye fixation sequences. This finding has implications for nurse training and the design of tools and technologies that support nurses as they complete the medication administration process. (c) 2011 APA, all rights reserved

    Designing property specifications to improve the safety of the blood transfusion process

    No full text
    Computer scientists use a number of well-established techniques that have the potential to improve the safety of patient care processes. One is the formal definition of a process; the other is the formal definition of the properties of a process. Even highly regulated processes, such as laboratory specimen acquisition and transfusion therapy, use guidelines that may be vague, misunderstood, and hence erratically implemented. Examining processes in a systematic way has led us to appreciate the potential variability in routine health care practice and the impact of this variability on patient safety in the clinical setting. The purpose of this article is to discuss the use of innovative computer science techniques as a means of formally defining and specifying certain desirable goals of common, high-risk, patient care processes. Our focus is on describing the specification of process properties, that is, the high-level goals of a process that ultimately dictate why a process should be performed in a given manner

    Bar-code verification: Reducing but not eliminating medication errors

    No full text
    Using observation, eye tracking, and clinical simulation with embedded errors, we studied the impact of bar-code verification on error identification and recovery during medication administration. Data supported that bar-code verification may reduce but does not eliminate patient identification (ID) and medication errors during clinical simulation of medication administration

    Strategies used by nurses to recover medical errors in an academic emergency department setting.

    No full text
    PURPOSE: The purpose of this study was to gain insight into how nurses recover medical errors in the emergency department (ED) setting. METHODS: The research method was of exploratory descriptive design with qualitative analysis. Subjects who signed the
    corecore