49 research outputs found

    Exploration of pathomechanisms triggered by a single-nucleotide polymorphism in titin\u27s I-band: the cardiomyopathy-linked mutation T2580I

    Get PDF
    Missense single-nucleotide polymorphisms (mSNPs) in titin are emerging as a main causative factor of heart failure. However, distinguishing between benign and disease-causing mSNPs is a substantial challenge. Here, we research the question of whether a single mSNP in a generic domain of titin can affect heart function as a whole and, if so, how. For this, we studied the mSNP T2850I, seemingly linked to arrhythmogenic right ventricular cardiomyopathy (ARVC). We used structural biology, computational simulations and transgenic muscle in vivo methods to track the effect of the mutation from the molecular to the organismal level. The data show that the T2850I exchange is compatible with the domain three-dimensional fold, but that it strongly destabilizes it. Further, it induces a change in the conformational dynamics of the titin chain that alters its reactivity, causing the formation of aberrant interactions in the sarcomere. Echocardiography of knock-in mice indicated a mild diastolic dysfunction arising from increased myocardial stiffness. In conclusion, our data provide evidence that single mSNPs in titin\u27s I-band can alter overall muscle behaviour. Our suggested mechanisms of disease are the development of non-native sarcomeric interactions and titin instability leading to a reduced I-band compliance. However, understanding the T2850I-induced ARVC pathology mechanistically remains a complex problem and will require a deeper understanding of the sarcomeric context of the titin region affected

    Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: effect of cytostatic drugs

    Get PDF
    Breast cancer is the leading cause of cancer deaths among non-smoking women worldwide. At the moment the treatment regime is such that patients receive different chemotherapeutic and/or hormonal treatments dependent on the hormone receptor status, the menopausal status and age. However, in vitro sensitivity testing of tumor biopsies could rationalize and improve the choice of chemo- and hormone therapy. Lab-on-a-Chip devices, using microfluidic techniques, make detailed cellular analysis possible using fewer cells, enabling working with a patients’ own cells and performing chemo- and hormone sensitivity testing in an ex vivo setting. This article describes the development of two microfluidic devices made in poly(dimethylsiloxane) (PDMS) to validate the cell culture properties and analyze the chemosensitivity of MCF-7 cells (estrogen receptor positive human breast cancer cells) in response to the drug staurosporine (SSP). In both cases, cell viability was assessed using the life-stain Calcein-AM (CAAM) and the death dye propidium iodide (PI). MCF-7 cells could be statically cultured for up to 7 days in the microfluidic chip. A 30 min flow with SSP and a subsequent 24 h static incubation in the incubator induced apoptosis in MCF-7 cells, as shown by a disappearance of the aggregate-like morphology, a decrease in CAAM staining and an increase in PI staining. This work provides valuable leads to develop a microfluidic chip to test the chemosensitivity of tumor cells in response to therapeutics and in this way improve cancer treatment towards personalized medicine

    A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

    Get PDF
    Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2−, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses

    Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: Prospective, multicentre cohort study

    Get PDF
    Study question What are the diagnostic yield and accuracy of early computed tomography (CT) angiography followed by magnetic resonance imaging/angiography (MRI/MRA) and digital subtraction angiography (DSA) in patients with non-traumatic intracerebral haemorrhage? Methods This prospective diagnostic study enrolled 298 adults (18-70 years) treated in 22 hospitals in the Netherlands over six years. CT angiography was performed within seven days of haemorrhage. If the result was negative, MRI/MRA was performed four to eight weeks later. DSA was performed when the CT angiography or MRI/MRA results were inconclusive or negative. The main outcome was a macrovascular cause, including arteriovenous malformation, aneurysm, dural arteriovenous fistula, and cavernoma. Three blinded neuroradiologists independently evaluated the images for macrovascular causes of haemorrhage. The reference standard was the best available evidence from all findings during one year's follow-up. Study answer and limitations A macrovascular cause was identified in 69 patients (23%). 291 patients (98%) underwent CT angiography; 214 with a negative result underwent additional MRI/MRA and 97 with a negative result for both CT angiography and MRI/MRA underwent DSA. Early CT angiography detected 51 macrovascular causes (yield 17%, 95% confidence interval 13% to 22%). CT angiography with MRI/MRA identified two additional macrovascular causes (18%, 14% to 23%) and these modalities combined with DSA another 15 (23%, 18% to 28%). This last extensive strategy failed to detect a cavernoma, which was identified on MRI during follow-up (reference strategy). The positive predictive value of CT angiography was 72% (60% to 82%), of additional MRI/MRA was 35% (14% to 62%), and of additional DSA was 100% (75% to 100%). None of the patients experienced complications with CT angiography or MRI/MRA; 0.6% of patients who underwent DSA experienced p

    Genetics of rheumatoid arthritis contributes to biology and drug discovery

    Get PDF
    A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Large-scale analysis of structural brain asymmetries in schizophrenia via the ENIGMA consortium

    Get PDF
    Left-right asymmetry is an important organizing feature of the healthy brain that may be altered in schizophrenia, but most studies have used relatively small samples and heterogeneous approaches, resulting in equivocal findings. We carried out the largest case-control study of structural brain asymmetries in schizophrenia, using MRI data from 5,080 affected individuals and 6,015 controls across 46 datasets in the ENIGMA consortium, using a single image analysis protocol. Asymmetry indexes were calculated for global and regional cortical thickness, surface area, and subcortical volume measures. Differences of asymmetry were calculated between affected individuals and controls per dataset, and effect sizes were meta-analyzed across datasets. Small average case-control differences were observed for thickness asymmetries of the rostral anterior cingulate and the middle temporal gyrus, both driven by thinner left-hemispheric cortices in schizophrenia. Analyses of these asymmetries with respect to the use of antipsychotic medication and other clinical variables did not show any significant associations. Assessment of age- and sex-specific effects revealed a stronger average leftward asymmetry of pallidum volume between older cases and controls. Case-control differences in a multivariate context were assessed in a subset of the data (N = 2,029), which revealed that 7% of the variance across all structural asymmetries was explained by case-control status. Subtle case-control differences of brain macro-structural asymmetry may reflect differences at the molecular, cytoarchitectonic or circuit levels that have functional relevance for the disorder. Reduced left middle temporal cortical thickness is consistent with altered left-hemisphere language network organization in schizophrenia
    corecore