20 research outputs found

    Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    Get PDF
    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing \et measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS

    EU/US/CTAD Task Force: Lessons Learned from Recent and Current Alzheimer's Prevention Trials

    Get PDF
    At a meeting of the EU/US/Clinical Trials in Alzheimer’s Disease (CTAD) Task Force in December 2016, an international group of investigators from industry, academia, and regulatory agencies reviewed lessons learned from ongoing and planned prevention trials, which will help guide future clinical trials of AD treatments, particularly in the pre-clinical space. The Task Force discussed challenges that need to be addressed across all aspects of clinical trials, calling for innovation in recruitment and retention, infrastructure development, and the selection of outcome measures. While cognitive change provides a marker of disease progression across the disease continuum, there remains a need to identify the optimal assessment tools that provide clinically meaningful endpoints. Patient- and informant-reported assessments of cognition and function may be useful but present additional challenges. Imaging and other biomarkers are also essential to maximize the efficiency of and the information learned from clinical trials

    Calibration of the CMS hadron calorimeters using proton-proton collision data at root s=13 TeV

    Get PDF
    Methods are presented for calibrating the hadron calorimeter system of theCMSetector at the LHC. The hadron calorimeters of the CMS experiment are sampling calorimeters of brass and scintillator, and are in the form of one central detector and two endcaps. These calorimeters cover pseudorapidities vertical bar eta vertical bar ee data. The energy scale of the outer calorimeters has been determined with test beam data and is confirmed through data with high transverse momentum jets. In this paper, we present the details of the calibration methods and accuracy.Peer reviewe

    Factors Associated With Having a Physician, Nurse Practitioner, or Physician Assistant as Primary Care Provider for Veterans With Diabetes Mellitus

    No full text
    Expanded use of nurse practitioners (NPs) and physician assistants (PAs) is a potential solution to workforce issues, but little is known about how NPs and PAs can best be used. Our study examines whether medical and social complexity of patients is associated with whether their primary care provider (PCP) type is a physician, NP, or PA. In this national retrospective cohort study, we use 2012-2013 national Veterans Administration (VA) electronic health record data from 374 223 veterans to examine whether PCP type is associated with patient, clinic, and state-level factors representing medical and social complexity, adjusting for all variables simultaneously using a generalized logit model. Results indicate that patients with physician PCPs are modestly more medically complex than those with NP or PA PCPs. For the group having a Diagnostic Cost Group (DCG) score >2.0 compared with the group having DCG <0.5, odds of having an NP or a PA were lower than for having a physician PCP (NP odds ratio [OR] = 0.83, 95% confidence interval [CI]: 0.79-0.88; PA OR = 0.85, CI: 0.80-0.89). Social complexity is not consistently associated with PCP type. Overall, we found minor differences in provider type assignment. This study improves on previous work by using a large national dataset that accurately ascribes the work of NPs and PAs, analyzing at the patient level, analyzing NPs and PAs separately, and addressing social as well as medical complexity. This is a requisite step toward studies that compare patient outcomes by provider type

    A metadata reporting framework (FRAMES) for synthesis of ecohydrological observations

    No full text
    Metadata describe the ancillary information needed for data preservation and independent interpretation, comparison across heterogeneous datasets, and quality assessment and quality control (QA/QC). Environmental observations are vastly diverse in type and structure, can be taken across a wide range of spatiotemporal scales in a variety of measurement settings and approaches, and saved in multiple formats. Thus, well-organized, consistent metadata are required to produce usable data products from diverse environmental observations collected across field sites. However, existing metadata reporting protocols do not support the complex data synthesis and model-data integration needs of interdisciplinary earth system research. We developed a metadata reporting framework (FRAMES) to enable management and synthesis of observational data that are essential in advancing a predictive understanding of earth systems. FRAMES utilizes best practices for data and metadata organization enabling consistent data reporting and compatibility with a variety of standardized data protocols. We used an iterative scientist-centered design process to develop FRAMES, resulting in a data reporting format that incorporates existing field practices to maximize data-entry efficiency. Thus, FRAMES has a modular organization that streamlines metadata reporting and can be expanded to incorporate additional data types. With FRAMES's multi-scale measurement position hierarchy, data can be reported at observed spatial resolutions and then easily aggregated and linked across measurement types to support model-data integration. FRAMES is in early use by both data originators (persons generating data) and consumers (persons using data and metadata). In this paper, we describe FRAMES, identify lessons learned, and discuss areas of future development. © 2017 Elsevier B.V

    Enabling FAIR data in Earth and environmental science with community-centric (meta)data reporting formats.

    No full text
    Research can be more transparent and collaborative by using Findable, Accessible, Interoperable, and Reusable (FAIR) principles to publish Earth and environmental science data. Reporting formats-instructions, templates, and tools for consistently formatting data within a discipline-can help make data more accessible and reusable. However, the immense diversity of data types across Earth science disciplines makes development and adoption challenging. Here, we describe 11 community reporting formats for a diverse set of Earth science (meta)data including cross-domain metadata (dataset metadata, location metadata, sample metadata), file-formatting guidelines (file-level metadata, CSV files, terrestrial model data archiving), and domain-specific reporting formats for some biological, geochemical, and hydrological data (amplicon abundance tables, leaf-level gas exchange, soil respiration, water and sediment chemistry, sensor-based hydrologic measurements). More broadly, we provide guidelines that communities can use to create new (meta)data formats that integrate with their scientific workflows. Such reporting formats have the potential to accelerate scientific discovery and predictions by making it easier for data contributors to provide (meta)data that are more interoperable and reusable
    corecore