120 research outputs found

    Epidermal growth factor receptor as target for perioperative elimination of circulating colorectal cancer cells

    Get PDF
    Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats. This study investigated whether the epidermal growth factor receptor (EGFR) represents a suitable target for preoperative antibody treatment of colorectal cancer patients undergoing surgery. The majority of patients with resectable colorectal liver metastases were shown to have EGFR + CTCs. Three different anti-EGFR mAbs (cetuximab, zalutumumab, and panitumumab) were equally efficient in the opsonization of tumor cell lines. Additionally, all three mAbs induced antibody-dependent cellular phagocytosis (ADCP) of tumor cells by macrophages at low antibody concentrations in vitro, independent of mutations in EGFR signaling pathways. The plasma of cetuximab-treated patients efficiently opsonized tumor cells ex vivo and induced phagocytosis. Furthermore, neither proliferation nor migration of epithelial cells was affected in vitro, supporting that wound healing will not be hampered by treatment with low anti-EGFR mAb concentrations. These data support the use of a low dose of anti-EGFR mAbs prior to resection of the tumor to eliminate CTCs without interfering with the healing of the anastomosis. Ultimately, this may reduce the risk of metastasis development, consequently improving long-term patient outcome significantly.Transplantation and autoimmunit

    Depression, anxiety, and the risk of cancer: An individual participant data meta-analysis

    Get PDF
    BACKGROUND: Depression and anxiety have long been hypothesized to be related to an increased cancer risk. Despite the great amount of research that has been conducted, findings are inconclusive. To provide a stronger basis for addressing the associations between depression, anxiety, and the incidence of various cancer types (overall, breast, lung, prostate, colorectal, alcohol-related, and smoking-related cancers), individual participant data (IPD) meta-analyses were performed within the Psychosocial Factors and Cancer Incidence (PSY-CA) consortium. METHODS: The PSY-CA consortium includes data from 18 cohorts with measures of depression or anxiety (up to N = 319,613; cancer incidences, 25,803; person-years of follow-up, 3,254,714). Both symptoms and a diagnosis of depression and anxiety were examined as predictors of future cancer risk. Two-stage IPD meta-analyses were run, first by using Cox regression models in each cohort (stage 1), and then by aggregating the results in random-effects meta-analyses (stage 2). RESULTS: No associations were found between depression or anxiety and overall, breast, prostate, colorectal, and alcohol-related cancers. Depression and anxiety (symptoms and diagnoses) were associated with the incidence of lung cancer and smoking-related cancers (hazard ratios [HRs], 1.06–1.60). However, these associations were substantially attenuated when additionally adjusting for known risk factors including smoking, alcohol use, and body mass index (HRs, 1.04–1.23). CONCLUSIONS: Depression and anxiety are not related to increased risk for most cancer outcomes, except for lung and smoking-related cancers. This study shows that key covariates are likely to explain the relationship between depression, anxiety, and lung and smoking-related cancers

    Psychosocial factors and cancer incidence (PSY-CA): Protocol for individual participant data meta-analyses

    Get PDF
    Objectives: Psychosocial factors have been hypothesized to increase the risk of cancer. This study aims (1) to test whether psychosocial factors (depression, anxiety, recent loss events, subjective social support, relationship status, general distress, and neuroticism) are associated with the incidence of any cancer (any, breast, lung, prostate, colorectal, smoking-related, and alcohol-related); (2) to test the interaction between psychosocial factors and factors related to cancer risk (smoking, alcohol use, weight, physical activity, sedentary behavior, sleep, age, sex, education, hormone replacement therapy, and menopausal status) with regard to the incidence of cancer; and (3) to test the mediating role of health behaviors (smoking, alcohol use, weight, physical activity, sedentary behavior, and sleep) in the relationship between psychosocial factors and the incidence of cancer. Methods: The psychosocial factors and cancer incidence (PSY-CA) consortium was established involving experts in the field of (psycho-)oncology, methodology, and epidemiology. Using data collected in 18 cohorts (N = 617,355), a preplanned two-stage individual participant data (IPD) meta-analysis is proposed. Standardized analyses will be conducted on harmonized datasets for each cohort (stage 1), and meta-analyses will be performed on the risk estimates (stage 2). Conclusion: PSY-CA aims to elucidate the relationship between psychosocial factors and cancer risk by addressing several shortcomings of prior meta-analyses

    Clinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides

    Get PDF
    Background: Articular cartilage has very limited intrinsic regenerative capacity, making cell-based therapy a tempting approach for cartilage repair. Cell tracking can be a major step towards unraveling and improving the repair process of these therapies. We studied superparamagnetic iron oxides (SPIO) for labeling human bone marrow-derived mesenchymal stem cells (hBMSCs) regarding effectivity, cell viability, long term metabolic cell activity, chondrogenic differentiation and hBMSC secretion profile. We additionally examined the capacity of synovial cells to endocytose SPIO from dead, labeled cells, together with the use of magnetic resonance imaging (MRI) for intra-articular visualization and quantification of SPIO labeled cells. Methodology/Prinicipal Findings: Efficacy and various safety aspects of SPIO cell labeling were determined using appropriate assays. Synovial SPIO re-uptake was investigated in vitro by co-labeling cells with SPIO and green fluorescent protein (GFP). MRI experiments were performed on a clinical 3.0T MRI scanner. Two cell-based cartilage repair techniques were mimicked for evaluating MRI traceability of labeled cells: intra-articular cell injection and cell implantation in cartilage defects. Cells were applied ex vivo or in vitro in an intra-articular environment and immediately scanned. SPIO labeling was effective and did not impair any of the studied safety aspects, including hBMSC secretion profile. SPIO from dead, labeled cells could be taken up by synovial cells. Both injected and implanted SPIO-labeled cells could accurately be visualized by MRI in a clinically relevant sized joint model using clinically applied cell doses. Finally, we quantified the amount of labeled cells seeded in cartilage defects using MR-based relaxometry. Conclusions: SPIO labeling appears to be safe without influencing cell behavior. SPIO labeled cells can be visualized in an intra-articular environment and quantified when seeded in cartilage defects.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Defining the Earliest Transcriptional Steps of Chondrogenic Progenitor Specification during the Formation of the Digits in the Embryonic Limb

    Get PDF
    The characterization of genes involved in the formation of cartilage is of key importance to improve cell-based cartilage regenerative therapies. Here, we have developed a suitable experimental model to identify precocious chondrogenic events in vivo by inducing an ectopic digit in the developing embryo. In this model, only 12 hr after the implantation of a TgfÎČ bead, in the absence of increased cell proliferation, cartilage forms in undifferentiated interdigital mesoderm and in the course of development, becomes a structurally and morphologically normal digit. Systematic quantitative PCR expression analysis, together with other experimental approaches allowed us to establish 3 successive periods preceding the formation of cartilage. The “pre-condensation stage”, occurring within the first 3 hr of treatment, is characterized by the activation of connective tissue identity transcriptional factors (such as Sox9 and Scleraxis) and secreted factors (such as Activin A and the matricellular proteins CCN-1 and CCN-2) and the downregulation of the galectin CG-8. Next, the “condensation stage” is characterized by intense activation of Smad 1/5/8 BMP-signaling and increased expression of extracellular matrix components. During this period, the CCN matricellular proteins promote the expression of extracellular matrix and cell adhesion components. The third period, designated the “pre-cartilage period”, precedes the formation of molecularly identifiable cartilage by 2–3 hr and is characterized by the intensification of Sox 9 gene expression, along with the stimulation of other pro-chondrogenic transcription factors, such as HifIa. In summary, this work establishes a temporal hierarchy in the regulation of pro-chondrogenic genes preceding cartilage differentiation and provides new insights into the relative roles of secreted factors and cytoskeletal regulators that direct the first steps of this process in vivo

    Basic science of osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a prevalent, disabling disorder of the joints that affects a large population worldwide and for which there is no definitive cure. This review provides critical insights into the basic knowledge on OA that may lead to innovative end efficient new therapeutic regimens. While degradation of the articular cartilage is the hallmark of OA, with altered interactions between chondrocytes and compounds of the extracellular matrix, the subchondral bone has been also described as a key component of the disease, involving specific pathomechanisms controlling its initiation and progression. The identification of such events (and thus of possible targets for therapy) has been made possible by the availability of a number of animal models that aim at reproducing the human pathology, in particular large models of high tibial osteotomy (HTO). From a therapeutic point of view, mesenchymal stem cells (MSCs) represent a promising option for the treatment of OA and may be used concomitantly with functional substitutes integrating scaffolds and drugs/growth factors in tissue engineering setups. Altogether, these advances in the fundamental and experimental knowledge on OA may allow for the generation of improved, adapted therapeutic regimens to treat human OA.(undefined

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    The critical care management of poor-grade subarachnoid haemorrhage

    Full text link
    • 

    corecore