73 research outputs found

    A fast wavelet-based functional association analysis replicates several susceptibility loci for birth weight in a Norwegian population

    Get PDF
    Background Birth weight (BW) is one of the most widely studied anthropometric traits in humans because of its role in various adult-onset diseases. The number of loci associated with BW has increased dramatically since the advent of whole-genome screening approaches such as genome-wide association studies (GWASes) and meta-analyses of GWASes (GWAMAs). To further contribute to elucidating the genetic architecture of BW, we analyzed a genotyped Norwegian dataset with information on child’s BW (N=9,063) using a slightly modified version of a wavelet-based method by Shim and Stephens (2015) called WaveQTL. Results WaveQTL uses wavelet regression for regional testing and offers a more flexible functional modeling framework compared to conventional GWAS methods. To further improve WaveQTL, we added a novel feature termed “zooming strategy” to enhance the detection of associations in typically small regions. The modified WaveQTL replicated five out of the 133 loci previously identified by the largest GWAMA of BW to date by Warrington et al. (2019), even though our sample size was 26 times smaller than that study and 18 times smaller than the second largest GWAMA of BW by Horikoshi et al. (2016). In addition, the modified WaveQTL performed better in regions of high LD between SNPs. Conclusions This study is the first adaptation of the original WaveQTL method to the analysis of genome-wide genotypic data. Our results highlight the utility of the modified WaveQTL as a complementary tool for identifying loci that might escape detection by conventional genome-wide screening methods due to power issues. An attractive application of the modified WaveQTL would be to select traits from various public GWAS repositories to investigate whether they might benefit from a second analysis.publishedVersio

    Placental weight centiles adjusted for age, parity and fetal sex

    Get PDF
    Introduction The weight of the placenta can be indicative of efficacy in nutrient and oxygen supply. Furthermore, it has been suggested that a measure of the placenta's ability to adequately supply nutrients to the fetus can be found in the relationship between birth weight and placental weight expressed as a ratio. Our aim was to develop age adjusted placenta weight and birth weight to placenta weight ratio reference curves that are stratified by maternal parity and fetal sex. Methods We included singleton, non-anomalous births with a gestational age inclusive of 28 + 0 weeks to 42 + 6 weeks. Excluded were pregnancies of multiplicity, fetuses with congenital abnormalities, stillbirths and pregnancies that had placental complications (ie placenta previa or abruption). Generalised additive model for location, shape and scale (GAMLSS) was used to fit reference curves. Results We stratified 97,882 pregnancies by maternal nulliparity status and fetal sex. Extensive assessment model goodness-of-fit showed appropriate modeling and accurate fit to the four parameters of distribution. Our results show accurate model fit of the reference curves to the data. We demonstrated that the influence that parity has on the placenta weight is far greater than that exerted by fetal sex, and that the difference is dependent on gestational age. Discussion This is the largest presentation of age and parity adjusted placenta weight and feto-placental weight ratio reference ranges to date. The difference observed between nulliparous and multiparous pregnancies could be explained by biological memory and the remnants of maternal endo-myometrial vascularity after the first pregnancy.publishedVersio

    Introducing M-GCTA a Software Package to Estimate Maternal (or Paternal) Genetic Effects on Offspring Phenotypes

    Get PDF
    There is increasing interest within the genetics community in estimating the relative contribution of parental genetic effects on offspring phenotypes. Here we describe the user-friendly M-GCTA software package used to estimate the proportion of phenotypic variance explained by maternal (or alternatively paternal) and offspring genotypes on offspring phenotypes. The tool requires large studies where genome-wide genotype data are available on mother- (or alternatively father-) offspring pairs. The software includes several options for data cleaning and quality control, including the ability to detect and automatically remove cryptically related pairs of individuals. It also allows users to construct genetic relationship matrices indexing genetic similarity across the genome between parents and offspring, enabling the estimation of variance explained by maternal (or alternatively paternal) and offspring genetic effects. We evaluated the performance of the software using a range of data simulations and estimated the computing time and memory requirements. We demonstrate the use of M-GCTA on previously analyzed birth weight data from two large population based birth cohorts, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Norwegian Mother and Child Cohort Study (MoBa). We show how genetic variation in birth weight is predominantly explained by fetal genetic rather than maternal genetic sources of variation

    The Chromosome 9p21 CVD-and T2D-Associated Regions in a Norwegian Population (The HUNT2 Survey)

    Get PDF
    Background. Two adjacent regions upstream CDKN2B on chromosome 9p21 have been associated with type 2 diabetes (T2D) and progression of cardiovascular disease (CVD). The precise location and number of risk variants have not been completely delineated and a possible synergistic relationship between the adjacent regions is not fully addressed. By a population based cross-sectional case-control design, we genotyped 18 SNPs upstream of CDKN2B tagging 138 kb in and around two LD-blocks associated with CVD and T2D and investigated associations with T2D, angina pectoris (AP), myocardial infarction (MI), coronary heart disease (CHD; AP or AMI), and stroke using 5,564 subjects from HUNT2. Results. Single point and haplotype analysis showed evidence for only one common T2D risk haplotype (rs10757282|rs10811661: OR = 1.19, = 2.0 × 10 −3 ) in the region. We confirmed the strong association between SNPs in the 60 kb CVD region with AP, MI, and CHD ( < 0.01). Conditioning on the lead SNPs in the region, we observed two suggestive independent single SNP association signals for MI, rs2065501 ( = 0.03) and rs3217986 ( = 0.04). Conclusions. We confirmed the association of known variants within the 9p21 interval with T2D and CHD. Our results further suggest that additional CHD susceptibility variants exist in this region

    Genetic liability for schizophrenia and childhood psychopathology in the general population

    Get PDF
    Abstract Genetic liability for schizophrenia is associated with psychopathology in early life. It is not clear if these associations are time dependent during childhood, nor if they are specific across different forms of psychopathology. Using genotype and questionnaire data on children (N = 15 105) from the Norwegian Mother, Father and Child Cohort Study, we used schizophrenia polygenic risk scores to test developmental stability in associations with measures of emotional and behavioral problems between 18 months and 5 years, and domain specificity in associations with symptoms of depression, anxiety, conduct problems, oppositionality, inattention, and hyperactivity at 8 years. We then sought to identify symptom profiles—across development and domains—associated with schizophrenia polygenic liability. We found evidence for developmental stability in associations between schizophrenia polygenic risk scores and emotional and behavioral problems, with the latter being mediated specifically via the rate of change in symptoms (β slope = 0.032; 95% CI: 0.007–0.057). At age 8, associations were better explained by a model of symptom-specific polygenic effects rather than effects mediated via a general psychopathology factor or by domain-specific factors. Overall, individuals with higher schizophrenia polygenic risk scores were more likely (OR = 1.310 [95% CIs: 1.122–1.528]) to have a profile of increasing behavioral and emotional symptoms in early childhood, followed by elevated symptoms of conduct disorder, oppositionality, hyperactivity, and inattention by age 8. Schizophrenia-associated alleles are linked to specific patterns of early-life psychopathology. The associations are small, but findings of this nature can help us better understand the developmental emergence of schizophrenia

    Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    Get PDF
    Funding Information: Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611–10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union’s Seventh Framework Programme (FP/2007– 2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611–10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics– Canadian Institute of Health Research (CIHR) [MFH]; CIHR— Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw–VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010–2011 PRIN funds of the University of Ferrara—Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli—and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, ‘5 per mille’ contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4–2007-201413 [L.M.]; ESRC (RES-060–23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NF-SI-0611–10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Funding Information: We are extremely grateful to the participants and families who contributed to all of the studies and the teams of investigators involved in each one. These include interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. This research has been conducted using the UK Biobank Resource (Application numbers 7036 and 12703). For additional study-specific acknowledgements, please see Supplementary Material. Conflict of Interest statement. D.A.L. has received support from Roche Diagnostics and Medtronic for biomarker research unrelated to the work presented here. Funding Researchers were funded by investment from the European Regional Development Fund (ERDF) and the European Social Fund (ESF) Convergence Programme for Cornwall and the Isles of Scilly [J.T.]; European Research Council (ERC) [grant: SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC to T.M.F., A.R.W.], [ERC Consolidator Grant, ERC-2014-CoG-648916 to V.W.V.J.], [P.R.N.]; University of Bergen, KG Jebsen and Helse Vest [P.R.N.]; Wellcome Trust Senior Investigator Awards [A.T.H. (WT098395), M.I.M. (WT098381)]; National Institute for Health Research (NIHR) Senior Investigator Award (NF-SI-0611-10219); Sir Henry Dale Fellowship (Wellcome Trust and Royal Society grant: WT104150) [R.M.F., R.N.B.]; 4-year studentship (Grant Code: WT083431MF) [R.C.R]; the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement (grant number 669545; Develop Obese) [D.A.L.]; US National Institute of Health (grant: R01 DK10324) [D.A.L, C.L.R]; Wellcome Trust GWAS grant (WT088806) [D.A.L] and NIHR Senior Investigator Award (NF-SI-0611-10196) [D.A.L]; Wellcome Trust Institutional Strategic Support Award (WT097835MF) [M.A.T.]; The Diabetes Research and Wellness Foundation Non-Clinical Fellowship [J.T.]; Australian National Health and Medical Research Council Early Career Fellowship (APP1104818) [N.M.W.]; Daniel B. Burke Endowed Chair for Diabetes Research [S.F.A.G.]; UK Medical Research Council Unit grants MC_UU_12013_5 [R.C.R, L.P, S.R, C.L.R, D.M.E., D.A.L.] and MC_UU_12013_4 [D.M.E.]; Medical Research Council (grant: MR/M005070/1) [M.N.W., S.E.J.]; Australian Research Council Future Fellowship (FT130101709) [D.M.E] and (FT110100548) [S.E.M.]; NIHR Oxford Biomedical Research Centre (BRC); Oak Foundation Fellowship and Novo Nordisk Foundation (12955) [B.F.]; FRQS research scholar and Clinical Scientist Award by the Canadian Diabetes Association and the Maud Menten Award from the Institute of Genetics-Canadian Institute of Health Research (CIHR) [MFH]; CIHR-Frederick Banting and Charles Best Canada Graduate Scholarships [C.A.]; FRQS [L.B.]; Netherlands Organization for Health Research and Development (ZonMw-VIDI 016.136.361) [V.W.V.J.]; National Institute on Aging (R01AG29451) [J.M.M.]; 2010-2011 PRIN funds of the University of Ferrara-Holder: Prof. Guido Barbujani, Supervisor: Prof. Chiara Scapoli-and in part sponsored by the European Foundation for the Study of Diabetes (EFSD) Albert Renold Travel Fellowships for Young Scientists, '5 per mille' contribution assigned to the University of Ferrara, income tax return year 2009 and the ENGAGE Exchange and Mobility Program for ENGAGE training funds, ENGAGE project, grant agreement HEALTH-F4-2007-201413 [L.M.]; ESRC (RES-060-23-0011) [C.L.R.]; National Institute of Health Research ([S.D., M.I.M.], Senior Investigator Award (NFSI-0611-10196) [D.A.L]); Australian NHMRC Fellowships Scheme (619667) [G.W.M]. For study-specific funding, please see Supplementary Material. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. Funding to pay the Open Access publication charges for this article was provided by the Charity Open Access Fund (COAF). Publisher Copyright: © The Author(s) 2018.Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P<5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.Peer reviewe

    Genome-wide association study of placental weight in 65,405 newborns and 113,620 parents reveals distinct and shared genetic influences between placental and fetal growth

    Get PDF
    A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth

    Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth

    Get PDF
    A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n = 65,405), maternal (n = 61,228) and paternal (n = 52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth
    corecore