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Background. Two adjacent regions upstream CDKN2B on chromosome 9p21 have been associated with type 2 diabetes (T2D) and
progression of cardiovascular disease (CVD).The precise location and number of risk variants have not been completely delineated
and a possible synergistic relationship between the adjacent regions is not fully addressed. By a population based cross-sectional
case-control design, we genotyped 18 SNPs upstream of CDKN2B tagging 138 kb in and around two LD-blocks associated with
CVD and T2D and investigated associations with T2D, angina pectoris (AP), myocardial infarction (MI), coronary heart disease
(CHD; AP or AMI), and stroke using 5,564 subjects from HUNT2. Results. Single point and haplotype analysis showed evidence
for only one common T2D risk haplotype (rs10757282|rs10811661: OR = 1.19, 𝑃 = 2.0× 10−3) in the region. We confirmed the strong
association between SNPs in the 60 kb CVD region with AP,MI, and CHD (𝑃 < 0.01). Conditioning on the lead SNPs in the region,
we observed two suggestive independent single SNP association signals for MI, rs2065501 (𝑃 = 0.03) and rs3217986 (𝑃 = 0.04).
Conclusions. We confirmed the association of known variants within the 9p21 interval with T2D and CHD. Our results further
suggest that additional CHD susceptibility variants exist in this region.

1. Introduction

One interesting region associated with type 2 diabetes (T2D)
and cardiovascular disease (CVD) is on chromosome 9p21 in
a gene desert ∼130 kb upstream of CDKN2B. Several SNPs
in the 9p21 interval are strongly associated with MI [1–4],
vascular disease [5–7], and cancer [8], all highly correlated
(𝑟2 > 0.8) and to be foundin a ∼60 kb region inhigh linkage dis-
equilibrium (LD).The 9p21 region also contains two adjacent,

but separate, T2D signals; a strong signal mapped to a 2 kb
LD-block (represented by rs10811661 and rs10757282) and
a putatively independent second signal (rs564398) located
∼100 kb from the T2D interval [9–11].

After the initial genome-wide association studies
(GWASs), several investigations confirmed the association
with the 9p21 candidate SNPs in T2D [12–17] and CVD [18–
24] and extended the number of CVD phenotypes associated
with the region [25–30]. A shared mechanistic link might
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Figure 1: Flow chart presenting the selection of study subjects. Flow chart presenting the inclusion and exclusion criteria of the study subjects
enrolled in the present study. A total of 5,564 subjects were eligible for analysis. ∗Some individuals have more than one outcome (e.g.,
myocardial infarction (MI) and type 2 diabetes (T2D)); hence, the sum of these counts does not match the total counts of study subjects.
T1D denotes type 1 diabetes. The final set of controls was reduced as subjects with MI and stroke were incorporated after the initial controls.

therefore exist within this region increasing risk of both CVD
and T2D through a common pathway. In patients with T2D,
a variant within 9p21 showed significant interaction between
poor glycemic control and risk of angiographically verified
coronary artery disease (CAD) [31]. However, the effects of
the disease susceptibility variants for the two major disease
loci have shown to be independent, since T2D risk variants
do not seem to confer increased risk of cardiovascular disease
or the other way around [5, 32].

A multilocus analysis of the 9p21 region suggested a
haplotype-effect on T2D risk rather than an effect from one
single SNP [33], indicating that the bona fide locus could be
situated somewhere in the vicinity of the test SNPs. However,
a comprehensive sequencing study of the 9p21 locus that
assessed rare variants and their association with T2D and
MI did not discover any variants with stronger association
than what was found in the initial GWASs [8]. Thus, we
chose to evaluate the distribution of common tagSNPs within
the region in individuals with overlapping T2D, angina
pectoris (AP), previous MI, or stroke from the Norwegian

population-based HUNT2 survey to assess the distribution
of T2D and CVD risk alleles in HUNT 2.

2. Materials and Methods

2.1. Study Subjects and Ethics Statement. The second Nord-
TrøndelagHealth Study (HUNT2) is an extensive population-
based health survey conducted in a Norwegian county
with 127,000 inhabitants of which 60,000 participated [34].
HUNT2 is a subset of HUNT and was carried out in 1995–
97. We had access to all subjects with diabetes (𝑛 = 1,850), in
addition to 600 individuals selected for incident MI and/or
stroke, but without diabetes, and 3,456 population-based
random controls drawn from the same study population.
After excluding 206 subjects with T1D, eight with genetically
verified MODY [35], and 128 subjects with missing BMI
data, 5,564 subjects were eligible for analysis (Figure 1). Diag-
nosis of diabetes, angina pectoris, previous MI, and stroke
(ischemic or hemorrhagic strokes grouped as one phenotype)
was self-reported. Written informed consent was obtained
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Table 1: Clinical characteristic of the 5564 subjects included in the study and eligible for analysis.

All T2D AP MI Stroke No T2D and/or CVD
Individuals (𝑛) 5,564 1,590a 769a 672a 500a 3,027a

Gender (male/female) 2,754/2,810 754/836 435/334 475/197 256/244 1,424/1,603
Age (years at examination) 60.4 ± 17.1 68.1 ± 12.0 72.4 ± 9.2 70.7 ± 10.3 70.8 ± 11.0 53.2 ± 17.6

BMI (kg/m2) 27.3 ± 4.4 29.2 ± 4.8 28.0 ± 4.3 27.5 ± 3.9 27.4 ± 3.9 26.4 ± 4.1

Ever smoked (yes/no) 2,600/2,964 647/943 345/424 367/305 241/259 1,468/1,559
Nonfasting serum glucoseb (mmol/L) 6.6 ± 3.1 9.6 ± 4.2 7.6 ± 3.6 7.2 ± 3.5 6.6 ± 2.7 5.4 ± 1.2

Serum triglyceride (mmol/L) 2.0 ± 1.3 2.5 ± 1.6 2.4 ± 1.6 2.3 ± 1.3 2.2 ± 1.5 1.8 ± 1.1

Serum cholesterol (mmol/L) 6.1 ± 1.3 6.2 ± 1.3 6.3 ± 1.3 6.2 ± 1.3 6.4 ± 1.3 6.0 ± 1.3

Serum HDL cholesterol (mmol/L) 1.3 ± 0.4 1.2 ± 0.4 1.2 ± 0.4 1.2 ± 0.4 1.3 ± 0.4 1.4 ± 0.4

Heart rate (bpm) 73.6 ± 13.6 75.5 ± 14.5 6.8 ± 13.6 67.6 ± 13.3 72.1 ± 13.4 74.1 ± 12.8

Type 2 diabetes (𝑛, %) 1,590 (28.6%) 1,590 (100%) 326 (42.4%) 212 (31.5%) 110 (22%) n/a
Myocardial infarction (𝑛, %) 672 (12.1%) 212 (13.3%) 357 (46.9%) 672 (100%) 83 (16.6%) n/a
Stroke (𝑛, %) 500 (9.0%) 110 (6.9%) 115 (15.1%) 357 (53.1%) 500 (100%) n/a
Angina pectoris (𝑛, %) 769 (13.7%) 326 (20.5%) 769 (100%) 83 (12.4%) 115 (23%) n/a
Values are presented as means ± SD or number (%). aSome individuals have more than one outcome (for example MI + diabetes); hence, the sum of these
column counts does not match the total counts of individuals. bOnly nonfasting glucose measures were available for participants in the HUNT2 cohort. MI
denotes previous myocardial infarction. Abbreviations: T2D, Type 2 diabetes; AP, angina pectoris; MI, myocardial infarction; CVD, cardiovascular disease;
bpm, beats per minute.

from all participants. This population based cross-sectional
case-control study was approved by the Regional Committee
for Research Ethics and the Norwegian Data Inspectorate,
and was performed according to the latest version of the
Helsinki Declaration.

2.2. SNP Selection, Genotyping, and Quality Control. We
selected tagSNPs across 9p21 from the interval between
Chr9:21,995,330 and 22,133,570 (NCBI Build 36). We selected
18 SNPs tagging a 138 kb region using the Haploview imple-
mentation of the Tagger algorithm [36] using the following
criteria: minor allele frequency (MAF) of >5% and pair-
wise 𝑟2 > 0.80. In addition, we added two previously
GWAS-identified T2D susceptibility variants (rs564398 and
rs10811661) and three confirmed CVD susceptibility variants
(rs1333040, rs10757278, and rs1333049). The genotyping was
carried out by the multiplex MassARRAY iPLEX System
(SEQUENOM Inc., San Diego, CA, USA) at CIGENE,
Ås, Norway. Five variants (rs1759417, rs1333049, rs7045889,
rs4977761, and rs6475610) did not pass quality control criteria
(minimum call rate > 95% and Hardy-Weinberg equilibrium
with 𝑃 > 0.01) and were excluded from analyses. Thus, we
assessed a total of 18 SNPs for association with T2D, angina
pectoris, previous MI, and stroke.

2.3. Statistical Analysis. We used logistic regression to model
single-point and haplotype association for the 18 SNPs with
T2D, MI, angina pectoris, coronary heart disease, and stroke
positive cases assuming additive effect of allele dosage. Gen-
der, age, and BMI were used as covariates in the regression
model in the analysis of T2D. Diabetes status and smoking
were added to the list of covariates while analyzing AP,
previous MI, CHD, and stroke. Individuals with a history of
either AP, previous MI, or stroke were excluded as control
subjects in the regressionmodels when analyzing CVD traits.

For T2D, AP,MI, and CHD, we carried out tests conditioning
on the lead SNPs (MI, angina pectoris, CHD: rs1333040 and
rs10757278, T2D: rs10811661) to look for secondary signals
of association. Multimarker haplotype analyses, haplotype
frequency estimates, and haplotype comparisons for all
phenotypes were performed using PLINK [37]. The sliding
window approach used for multimarker haplotype analysis
associates direct neighboring SNPs, generating 17 pairs of
SNPs in the two-point analysis. All SNPs frequencies were
consistent with Hardy-Weinberg equilibrium (HWE, 𝑃 >
0.01). All analyses were carried out using PLINK version
1.07 software [37] and/or Stata SE v10.0 for Windows (Stata
Corp LP, Brownsville, TX, USA). Figures displaying regional
information such as the strength and extent of the association
signals relative to genomic position, local linkage disequi-
librium (LD), and recombination patterns and the positions
of genes in the region were created using a combination of
LocusZoom web interface [38], R package SNP Plotter [39],
and Haploview [36]. We had >80% power to detect high-
frequency alleles with ORs of 1.20 to 1.30 for both T2D and
CVD phenotypes, but only around 50% and 30% power for
T2D and CVD phenotypes, respectively, if the true ORs were
1.10.These estimateswere performed using theGenetic Power
Calculator [40]. All𝑃 values are presentedwithout correction
for multiple testing.

3. Results

Table 1 shows the clinical characteristics for the 5564 individ-
uals enrolled in the present study.

3.1. Type 2 Diabetes. Regression analysis for association
with T2D revealed only modest evidence for a single-point
association for rs10811661 (𝑃 = 0.058) after correction for
age, gender, and BMI (Figure 2, Table 2). No SNP outside
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Figure 2: Plot summaries for single point association results. Plot
summary of association results for 18 SNPs tagging the 138 kb CVD
and T2D region on chromosome 9p21 for association with T2D,
myocardial infarction, stroke, angina pectoris, or CHD (both MI
and angina) using 5564 subjects from the HUNT2 study. The plot
show local association results for all phenotypes together with the
location and orientation of the genes it includes, local estimates of
recombination rates and LD heat map with defined blocks (Gabriel
et al.). The plots were created using the R-package SNP Plotter [39].

the previously implicated T2D block (LD-block 4 in Figure 2)
showed evidence for an association with T2D.

Next, we performed a two-point sliding-window haplo-
type analysis and observed an increase in the association for
this locus (rs10757282|rs10811661) with T2D (𝑃 = 2.0 × 10−3)
(Table 2). The association seemed to be driven by the C-T
risk haplotype (OR = 1.19, 𝑃 = 7.6 × 10−4), compared
to the two other common two-marker haplotypes (Table 3).
Further haplotype analysis in this LD-block revealed that
rs10757282 and rs10811661 completely tagged one distinct
risk haplotype spanning four consecutive markers in a 2-kb
region (LD block 4 in Figure 2). We observed a breakup of
the haplotype at markers rs10811658 and rs2065501, which
confines a candidate region, located 117–128 kb upstream of
CDKN2B. The risk haplotype had a frequency of 29 versus
26% in cases and controls (Table 3). HapMap data indicated
similar boundaries and frequencies for the haplotype (not
shown). An exploratory analysis of increasing haplotype
window sizes were performed but did only produce less

significant results; the strongest association was found for
haplotypes incorporating both rs10757282 and rs10811661.

3.2. Cardiovascular Diseases: Angina Pectoris, Myocardial
Infarction, and Stroke. Figure 2 and Additional file 1 (in
Supplementary Material available online at http://dx.doi.org/
10.1155/2014/164652) show the association results for each of
the 18 SNPs with AP, previousMI, CHD (AP or previousMI),
and stroke positive cases after adjustment for age, gender,
BMI, diabetes status, and smoking. We report replication
of the strong association between SNPs in the 60 kb CVD
region (defined by rs8181047 to rs10757278, Figure 2) with
AP (rs10757278: OR = 1.22; 𝑃 = 1.1 × 10−3, Figure 2),
MI (rs1333040: OR = 1.23, 𝑃 = 1.8 × 10−3, Figure 2), and
CHD (rs10757278: OR = 1.37; 𝑃 = 2.0 × 10−4, Figure 2).
Subanalyses showed that the effect of the CHD-associated
SNPs was strongest in those having the most severe pheno-
type including both AP and previous MI. None of the SNPs
in the CVD region demonstrated association with stroke, but
one marker (rs10757282) in the previously implicated T2D
region did show nominal evidence for association with stroke
(OR = 1.2 (1.04–1.38), 𝑃 = 0.01, Figure 2).

In exploratory analysis, we observed several nominally
significant potentially novel single SNP associations for
angina pectoris, previous MI, individuals with both AP and
previous MI, and stroke in the 138 kb interval (Additional
file 1). After conditioning upon the highly confirmed CVD
susceptibil0ity SNPs rs1333040 and rs10757278, only two
remaining SNPs (rs206550, OR = 1.32, 𝑃 = 0.04; and
rs3217986, OR = 1.15, 𝑃 = 0.04) showed nominal 𝑃 values
< 0.05 and only for MI (Table 4).

4. Discussion

Our findings highlight the genetic complexity of the chromo-
some 9p21 region. We found a weak but consistent single-
point association between marker rs10811661 and T2D, as
previously found in several studies [9–11, 41]. This was in
agreement with our former results obtained for thismarker in
a replication study performed in the same material from the
HUNT2 population [13]. However, in the present study, we
demonstrate a stronger association with a haplotype tagged
by rs10811661 and rs10757282 and T2D. These results are in
line with other studies [8]. Thus, these SNPs may tag a risk
haplotype harboring an allele important for development of
T2D. Alternatively, the 11 kb candidate region could harbor
several variants associated with the disease.

Published data are conflicting regarding any additional
T2D-associated signals in the 9p21 region [9–11]. Our data
do not support the existence of additional signals. The role
of rs564398 as a T2D susceptibility variant is disputed [9,
12, 42]. Ethnicity may play a role, although our data are not
supporting that this marker has a particularly strong effect in
Caucasians [43].

The 9p21 risk variants are located in non-protein cod-
ing regions; their effects possibly influencing expression of
nearby genes.Theregion contains two cyclin-dependent kinase
inhibitors, CDKN2A (p16INK4a) and CDKN2B (p15INK4b), and
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Table 3: T2D association results for haplotype rs10757282/rs10811661.

Haplotype Frequency OR 𝑃

Cases Controls

Overall evidence — — — 2.05 × 10
−3

CT 0.29 0.26 1.19 7.63 × 10
−4

TT 0.56 0.57 0.93 1.06 × 10
−1

CC 0.15 0.17 0.87 5.71 × 10
−2

Association results for haplotypes defined by rs10757282 and rs10811661 in
individuals with type 2 diabetes.

CDKN2BAS, a large antisense noncoding RNA gene. Expres-
sion of these genes is coregulated and most of the confirmed
CVD risk variants correlate with decreased expression of
CDKN2BAS and furthermore to atherosclerosis [44, 45].
Recent follow-up studies show correlation between the num-
ber of risk alleles and atherosclerotic CAD progression,
but no predisposition to MI in patients with preexisting
atherosclerotic CAD nor increased reoccurrence of MI [46–
48]. This suggests 9p21 risk variants promote atherosclerosis
rather than triggering MI [49]. Our associations with angina
pectoris as well as MI and with the strongest associations
in those having both AP and previous MI at the time of
screening may thus likely be mediated through increased
propensity for atherosclerosis.

The rs10757278 SNP has been highlighted as a potential
functional variant for the association with atherosclerotic
disease based on effects on expression of the INK4/ARF locus
(p15INK4b, p16INK4a, ARF and CDKN2BAS) [50–52]. In the
present study, we confirmed the associations for SNPs in the
CVD region with AP andMI.The associations were strongest
among subjects having both AP and previous MI. This could
be a marker for early progression of atherosclerotic CAD,
supporting the aforementioned association between 9p21 risk
variants and early progression.Moreover, the rs10757278 SNP
has beenmapped to one of 33 identified enhancers in the 9p21
interval, in which the risk variant disrupts a transcription
factor binding site, which could have functional relevance for
an atherosclerosis-associated pathway in human endothelial
cells [53].

We found no association between SNPs in the CVD
region and stroke. Our results are in accordance with some
studies [5, 54], but not with others [52, 55]. Several investiga-
tions aiming to address this discrepancy have confirmed 9p21
as a risk factor for stroke, but with evidence for heterogeneity
of effect across stroke subtypes. The strongest association
has been shown for large vessel stroke [56]. Thus, lacking
stroke subtyping in our study may be the reason we did
not find this association. Participants of the HUNT2 survey
were identified having stroke through a self-administered
questionnaire, hence details regarding type of stroke, hem-
orrhagic versus ischemic, or subtypes like atherothrombotic
or cardioembolic were not available. One could anticipate
that SNPs in the 9p21 region associated with ischemic, but
not hemorrhagic stroke. Studies have indicated that sequence
variation in 9p21 influences atherosclerosis development and

progression; the strongest association being seen for large
vessels [29]. On the other hand, rs1333040 has recently been
linked to sporadic brain arteriovenousmalformations known
to increase hemorrhagic stroke risk [7]. Moreover, the adja-
cent rs10757278 has been linked to hemorrhagic stroke [52].
These results might suggest different pathways for ischemic
andhemorrhagic stroke sharing commonmechanisms linked
to the same SNPs in the 9p21 region. Interestingly, when
restricting the analysis to subjects with T2D, several SNPs in
the 60 kb CVD region appeared associated with stroke, with
the most significant being rs1333040 (OR = 1.44; 𝑃 = 0.01).
This association was not seen in stroke subjects without T2D.
Interaction between variants within the 9p21 region and poor
glycemic control increasing risk of CVD in patients with T2D
has been suggested [31]. If similar associations were to be
found for stroke risk in diabetics, it would be interesting to
see whether poor glycemic control also affects different types
of stroke differently.

Our exploratory results also highlights two potential
novel CVD susceptibility variants, rs3217986 and rs2065501,
which are located close to, but not in strong LD with the
former and well-confirmed CVD region. The rs3217986 is
located in the 3 UTR of CDKN2B as well as in intron 1 of the
non-protein coding CDKN2B antisense RNA, CDKN2BAS.
Although speculative, it could be hypothesized that the risk
variant of rs3217986 might exert an effect on atherosclerotic
CAD susceptibility by influencing expression of one or
both of these two genes. To our knowledge, there are no
reports on whether the risk variant of rs3217986 is correlated
with expression of CDKN2B and/or CDKN2BAS; thus, this
hypothesis needs to be further resolved.

The study must be viewed in light of its limitations.
Although previous studies have confirmed highly significant
associations between SNPs in the region and CVD and T2D,
the many tests performed in this study could lead to a risk
of false positive findings. Thus, while the primary single SNP
associations and the T2D-risk haplotype are supported by
previous studies, the more explorative findings of putative
secondary signals need to be further investigated in much
larger cohorts. The sparse risk increase associated with these
common variants also renders our findings inadequate for
clinical prediction. Fine-mapping studies of disease associ-
ated regions may still prove important to guide further inves-
tigation towards understanding the disease pathogenesis and
possibly providing tools for cost-efficient risk stratification in
the future.

Despite the close proximity between the CVD and T2D
risk regions, our study is in line with previous studies and
indicates that there is no apparent overlap between the two
risk regions. Theories with reference to the concrete disease
mechanismmediated by the risk variants of the 9p21 interval
have increased in numbers the last years. However, since
most of them still remain exploratory, the exact nature of the
disease associated variants and their targets require further
elucidation.Theymay possibly differ between CVD and T2D.
It is possible that large-scale genome sequencing efforts may
aid by identifying the underlying risk variants in the 9p21
region.
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Table 4: Top five association results for CVD after conditioning upon lead SNPs.

SNP Minor allele AP MI Both MI and AP
OR (95% CI) 𝑃 OR (95% CI) 𝑃 OR (95% CI) 𝑃

rs3217986 C 1.21 (0.95–1.53) 0.13 1.32 (1.01–1.71) 0.04 1.25 (0.89–1.75) 0.19
rs2065501 A 1.07 (0.94–1.21) 0.33 1.15 (1.01–1.32) 0.04 1.11 (0.94–1.33) 0.23
rs10757282 C 1.09 (0.96–1.24) 0.18 1.14 (1.00–1.31) 0.05 n/a n/a
rs10811647 G n/a 0.84 (0.69–1.03) 0.09 n/a n/a
rs16905599 A 1.25 (0.95–1.63) 0.11 1.27 (0.95–1.71) 0.10 1.31 (0.89–1.94) 0.17
rs1333051 T 0.87 (0.71–1.07) 0.20 n/a n/a 0.85 (0.64–1.13) 0.27
rs8181047 A n/a n/a n/a n/a 1.16 (0.89–1.53) 0.28
Association results for the top five associated SNPs after conditioning upon the lead CVD SNPs rs1333040 and rs10757278 for individuals with angina pectoris
(AP), myocardial infarction (MI), and both MI and AP.

5. Conclusions

In conclusion, we confirm the association between variants
in the 9p21 interval with T2D and CHD. Our results suggest
that there exist additional CVD susceptibility variants in this
region, highlighting the genetic complexity of the 9p21 region
and human disease.
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