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Abstract 

There is increasing interest within the genetics community in estimating the relative 

contribution of parental genetic effects on offspring phenotypes. Here we describe the user-

friendly M-GCTA software package used to estimate the proportion of phenotypic variance 

explained by maternal (or alternatively paternal) and offspring genotypes on offspring 

phenotypes. The tool requires large studies where genome-wide genotype data are available on 

mother- (or alternatively father-) offspring pairs. The software includes several options for data 

cleaning and quality control, including the ability to detect and automatically remove 

cryptically related pairs of individuals. It also allows users to construct genetic relationship 

matrices indexing genetic similarity across the genome between parents and offspring, enabling 

the estimation of variance explained by maternal (or alternatively paternal) and offspring 

genetic effects. We evaluated the performance of the software using a range of data simulations 

and estimated the computing time and memory requirements. We demonstrate the use of M-

GCTA on previously analyzed birth weight data from two large population based birth cohorts, 

the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Norwegian Mother 

and Child Cohort Study (MoBa). We show how genetic variation in birth weight is 

predominantly explained by fetal genetic rather than maternal genetic sources of variation. 

 

Key Words: M-GCTA; Maternal effects; Paternal effects; G-REML; Heritability; SNP 

heritability 

  



 

 

Introduction 

Maternal genetic effects may be defined as the causal influence of maternal genotypes 

on offspring phenotypes over and above that which results from the transmission of genes from 

mother to child (Mather and Jinks 1982; Wolf and Wade 2009). This definition of maternal 

genetic effects focuses on the effect of the maternal genome and is distinct from contributions 

due to mitochondrial inheritance and genetic effects due to imprinting. Maternal genetic effects 

can affect offspring phenotypes through the intrauterine environment or postnatal influences 

via the environment that the mother provides for her offspring. The importance of maternal 

genetic effects has long been recognized by quantitative geneticists (Wolf and Wade 2009). 

However, in human studies maternal effects have largely been treated as environmental sources 

of resemblance between relatives, and/or as a factor that may contaminate estimates of the 

heritability and/or common environment depending on the study design (Falconer and Mackay 

1996; Meyer 1992). 

The impact of maternal genetic effects on offspring phenotypes can be quantified in 

studies of experimental animals, using controlled breeding and cross-fostering designs, such as 

factorial designs involving reciprocal crosses, half-sibling and full-sibling hybrid designs 

(Bernando 1996; Lynch and Walsh 1998). In humans, maternal effects are typically estimated 

using study designs involving the children of monozygotic and dizygotic twins (Corey and 

Nance 1978), or using studies involving half-siblings (York et al. 2013). In these studies, the 

covariance between different pairs of relatives allows decomposition of the phenotypic 

variance into maternal genetic effects and other variance components of interest. For example, 

using a study design involving the offspring of monozygotic and dizygotic twins, Magnus et 

al. (1984a) reported a distinct maternal genetic effect on offspring birth weight (3% to 20% of 

the phenotypic variance), which nevertheless was smaller than the estimated contribution from 

the fetal genome (50% to 69.4% of the phenotypic variance) (Magnus 1984a; Magnus 1984b). 

With the advent of genome-wide genotyping technology, genome-wide association 

studies (GWAS) have provided the ability to identify specific genetic loci in mothers that 

influence offspring phenotypes independent of offspring genotype. For example, investigators 

have used a combination of conditional association analysis of genotyped mother-offspring 

pairs (Horikoshi et al. 2016; Beaumont et al. 2018) and more recently structural equation 

modelling of genotyped mothers who report their own and their offspring’s phenotype 

(Warrington et al. 2018a) to identify maternal genetic effects at individual loci on offspring 

birth weight. However, maternal loci that influence offspring phenotypes typically have small 



 

 

effect sizes and thus may be difficult to identify in anything but the largest GWAS (Moen et 

al. 2019). 

In 2010, Yang et al. introduced the G-REML framework in human genetic studies in 

which genome-wide genetic similarity between unrelated individuals was used to partition 

phenotypic variance into genetic components of variation explained by tagged SNPs present 

on genome-wide arrays and residual sources of variation (Yang et al. 2010). This method 

allowed investigators to estimate the proportion of variance in the phenotype explained by all 

the genotyped SNPs on microarrays (so-called “SNP heritability”), and suggested that much of 

the missing heritability (Maher 2008) was in fact hiding in the form of variants of small effect 

scattered across the genome. We subsequently extended the basic G-REML framework to 

estimate the proportion of trait variance due to maternal genetic effects via a procedure we 

called maternal genome-wide complex trait analysis (M-GCTA) (Eaves et al. 2014). 

Specifically, M-GCTA used genome-wide SNP data from mother-offspring pairs to partition 

the phenotypic variance in the offspring phenotype into components attributable to the 

mothers’ genome, the child’s genome, the covariance between the two, and residual sources of 

variation (Eaves et al. 2014). Our results suggested that the presence of maternal genetic effects 

could inflate estimates of SNP heritability from procedures based on G-REML that did not take 

into account this putative source of variation (Yang et al. 2010; Speed et al. 2017). Although 

not discussed in the original article, we note that exactly the same method can also be used to 

estimate variation in offspring phenotype due to paternal genetic effects (although not maternal 

and paternal genetic effects simultaneously). The M-GCTA method has been applied to 

different perinatal phenotypes including birth length, birth weight, and gestational weight gain 

during pregnancy (Eaves et al. 2014; Horikoshi et al. 2016; Warrington et al. 2018b). Although 

the M-GCTA method attracted much attention across the scientific community (Hewitt 2015; 

Timpson et al. 2018), it has not been widely adopted by researchers. One reason is that 

application of the method requires thorough understanding of what might be perceived as a 

complicated linear mixed model and also the construction of several large genetic relatedness 

matrices (GRMs), which can be difficult and error prone in practice. 

In this manuscript, we introduce the user-friendly M-GCTA software package, which 

implements the M-GCTA statistical model, and includes an extension to estimate the variance 

due to paternal genetic effects (i.e. instead of maternal genetic effects, but not both 

simultaneously). Our software automatically constructs GRMs indexing genetic similarity 

across the genome between parents and offspring, thus allowing for the estimation of either 

maternal or paternal genetic effects. Several options for data cleaning and quality control are 



 

 

coded in the software, including the ability to detect and automatically remove one individual 

from each pair of related individuals. In order to assess the performance of M-GCTA, we 

applied the program to simulated data and compared the results with estimation in the GCTA 

software package using custom derived genomic relatedness matrices (Yang et al. 2011), and 

also by structural equation modelling using the OpenMx library and the R software package, 

version 3.5.1 (Boker et al. 2011; Eaves et al. 2014). We estimated the CPU time and memory 

requirements of the M-GCTA software by applying it to simulated datasets consisting of 

different numbers of genetic markers and mother-offspring pairs. We also applied M-GCTA to 

birth weight data from two large population based cohort studies that contain genotyped 

mothers and their offspring; the Norwegian Mothers and Child Cohort Study (MoBa) (Magnus 

et al. 2016) and the Avon Longitudinal Study of Parents and Children (ALSPAC) (Boyd et al. 

2013; Fraser et al. 2012). We show that offspring birth weight is influenced by fetal genetic 

factors and indirectly by the maternal genome to a lesser extent. Finally, we discuss the 

challenges in interpretation, limitations, assumptions and opportunities for future application 

of M-GCTA. 

 

Methods 

M-GCTA Model 

Following Eaves et al. (2014), the path model underlying the M-GCTA method is 

illustrated in Figure 1 (Eaves et al. 2014). Although we have specified this model with respect 

to mothers and their offspring, we emphasize that the model could equally apply to fathers and 

their offspring where these relationships are of interest and genome-wide data are available. In 

Figure 1, and following the convention of structural equation modelling, observed (measured) 

variables are denoted by square boxes and latent (unmeasured) factors by circles. Single headed 

arrows represent causal relationships and double-headed arrows indicate correlational 

relationships. The variable 𝑃 denotes the measured offspring phenotype (which is influenced 

by both offspring and maternal genotypes). 

The M-GCTA model parameterizes the similarity between unrelated genotyped 

mother-offspring pairs as a function of four latent genetic factors. 𝐺𝑀𝑀 represents maternal 

genotypes at loci that exert an effect on the offspring phenotype 𝑃 via path 𝑚 (i.e. maternal 

genetic effects). 𝐺𝑀𝐶 represents these same loci in offspring and the degree to which these loci 

affect the offspring phenotype is quantified by the path coefficient c. 𝐺𝐶𝐶 represents offspring 

genotypes at loci that induce no maternal effect when present in the mother’s genome but 



 

 

contribute directly to the offspring phenotype 𝑃  via path ℎ . Finally, 𝐺𝐶𝑀  represents the 

maternal loci that do not affect the offspring phenotype 𝑃. The same latent genetic factors in 

mothers and offspring are expected to correlate 0.5 with each other. Finally, 𝐸 represents the 

effect of residual environmental and untagged genetic factors that contribute to phenotype 𝑃 

through the causal path 𝑒.  

Assuming all latent variables (i.e., circles) have unit variance, then the path model in 

Figure 1 represents the following structural equation and variance decomposition: 

𝑦𝑗 = 𝜇 + 𝑚𝐺𝑀𝑀𝑗
+ ℎ𝐺𝐶𝐶𝑗

+ 𝑐𝐺𝑀𝐶𝑗
+ 𝑒𝐸𝑗 

with  

𝑣𝑎𝑟(𝒚) = 𝑚2 + ℎ2 + 𝑐2 + 𝑚𝑐 + 𝑒2 

where 𝑦𝑗  is the phenotypic value of individual j, μ is the mean phenotype, and 𝑚, ℎ, 𝑐 and 𝑒 

are path coefficients, with 𝑚2, ℎ2, 𝑐2, and 𝑒2 their corresponding variance components, and 

𝐺𝑀𝑀𝑗
, 𝐺𝐶𝐶𝑗

, 𝐺𝑀𝐶𝑗
, and 𝐸𝑗 are deviations of each individual on the corresponding latent genetic 

or residual effects with variance one. We stress that the h2 and c2 terms in the variance 

decomposition above have special meanings that are different from how these terms might be 

used in other manuscripts (i.e. h2 and c2 are often used to represent heritability and variance 

due to the shared environment respectively in other situations). In contrast, in the present 

manuscript, h2 refers to the phenotypic variance explained by SNPs at loci that induce no 

maternal effect when present in the mother’s genome but contribute directly to the offspring 

phenotype when present in the offspring genome. Likewise, c2 refers to the phenotypic variance 

explained by the direct effect of that set of offspring SNPs that when present in the mother’s 

genome exert maternal effects on the offspring phenotype. 

In Figure 2, the path model is extended to show the expected relationship between two 

unrelated mother-offspring pairs (i and j). The correlations between the latent genetic factors 

are defined as follows: 𝛼𝑖𝑗  is the genomic relatedness coefficients between mothers of pair i 

and j, 𝛽𝑖𝑗  is the relatedness coefficient between the offspring of pair i and j, and 𝛿𝑖𝑗  is the 

relatedness coefficients between the mother of pair i and the child of pair j. The following 

formula is used to calculate the genetic relatedness coefficient between each pair of individuals: 

1

𝑆
 ∑

(𝑥𝑖𝑘 − 2𝑝𝑘)(𝑥𝑗𝑘 − 2𝑝𝑘)

2𝑝𝑘(1 − 𝑝𝑘)

𝑆

𝑘=1

 



 

 

where xik refers to the number of alleles (0, 1 or 2) for individual i at the kth SNP, pk is the allele 

frequency of the kth SNP, and the measure is averaged over S SNPs across the genome. The 

correlations between the latent genetic variables (α, β, and δ) are assumed to be estimated 

without bias or error using genome-wide relatedness coefficients between unrelated pairs of 

individuals (Yang et al. 2011; Eaves et al. 2014). Accordingly, the expected covariance 

between the offspring’s phenotypes from pair i and j is: 

𝑐𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 𝛼𝑖𝑗𝑚2 + 𝛽𝑖𝑗(𝑐2 + ℎ2) + 𝑚𝑐(𝛿𝑖𝑗 + 𝛿𝑗𝑖) 

The M-GCTA model can also be expressed in terms of matrix algebra and variance 

components. Under this formulation, the genomic relatedness coefficients form the elements 

of three n × n matrices (where n is the number of mother-offspring pairs) indexing the genomic 

similarity between mothers (𝑴; the elements of which were previously denoted αij), children 

(𝑶; the elements of which were previously denoted βij), and between mothers and children (𝑫; 

the elements of which were previously denoted δij). In the interest of clarity, the matrices 𝑴 

and 𝑶 are symmetric, whilst the matrix 𝑫 is asymmetric.. The matrix formed by summing the 

𝑫 matrix with its transpose 𝑫 + 𝑫′) i.e. summing the genomic relatedness coefficients between 

mother i and child j, and between mother j and child i is also symmetric. By defining the 

variance of the offspring phenotype explained by maternal genetic effects as 𝜎𝑀
2 = 𝑚2, by 

offspring genetic effects as 𝜎𝑂
2 = 𝑐2 + ℎ2, by twice the covariance between the two as 𝜎𝐷 =

𝑚𝑐, and by the residual environmental effects as 𝜎𝑒
2 = 𝑒2, the phenotypic variance-covariance 

matrix (𝑽) can be partitioned as: 

𝑽 = 𝑴𝜎𝑀
2 + 𝑶𝜎𝑂

2 + (𝑫 + 𝑫′)𝜎𝐷 + 𝑰𝜎𝑒
2 

The variance components can then be estimated using restricted maximum likelihood (REML) 

(Yang et al. 2011) or full information maximum likelihood in e.g. the OpenMx software 

package (Boker et al. 2011; Eaves et al. 2014). Whilst we have not included fixed effects in the 

above description of the M-GCTA model, similar to ordinary GCTA, the M-GCTA software 

package can estimate fixed effects if included in the model for the means. 

 

2.2 Implementation and application of the M-GCTA software 

The M-GCTA software package is an extension of the GCTA software that has been written in 

C++ (Yang et al. 2011). The M-GCTA software uses source code from the GCTA software 

package (currently version 1.26.0) that has been modified to fit the M-GCTA statistical model 



 

 

and perform quality control functions relevant to genome-wide SNP datasets with parents and 

their offspring. Our program implements the M-GCTA method in two steps. First, the software 

identifies unrelated mother-/father- offspring pairs and calculates GRMs (i.e. matrices M, O 

and (D + D’)). The package then uses these GRMs to estimate the variance explained by each 

component using restricted maximum likelihood. We have implemented the M-GCTA 

software package as a downloadable application for the Linux/Unix platform. We built the M-

GCTA software because application of the M-GCTA statistical method in more generic 

software packages e.g. OpenMx can be difficult and error prone in practice. The aim of creating 

the M-GCTA software was to make it easy and straightforward for researchers to apply the M-

GCTA statistical method. 

M-GCTA identifies maternal and paternal relationships based on information provided by 

users in PLINK style .fam or .ped files (Purcell et al. 2007). It identifies families according to 

the family identifier (i.e. the first column of the .fam or .ped file), and recognises father-

offspring pairs and mother-offspring pairs based on values provided by the user (i.e. the third 

and fourth columns of the .fam or .ped file). By specifying the --mat or --pat flag, M-GCTA 

will extract the relevant parent-offspring pairs and perform the analyses (i.e. no explicit pruning 

of maternal and or paternal information by the user is required to perform these analyses and 

both sets of parents can be included in the data files). 

Users are required to generate PLINK style pedigree files consisting of mother-offspring duos, 

father-offspring pairs, parent child trios, or some combination of all of these. Users must only 

include one offspring per family. If additional offspring are included in the pedigree files then 

these families will be automatically excluded from analyses, a warning produced, and the 

identity of the offending families will be written to a text file. It is then up to the user how to 

deal with these individuals. Details of all the options provided by M-GCTA and 

recommendations for running the M-GCTA software are described on the M-GCTA github 

page (https://github.com/uqzqiao/M-GCTA). 

Currently, the M-GCTA statistical model can only estimate maternal/paternal (and other) 

variance components using one parent and child at a time (i.e. either mothers and their child, 

or fathers and their child). Extending the statistical model to estimate maternal and paternal 

variance components simultaneously using parent-offspring trios, including more than one 

child in each family in the analysis, and extending the model to multivariate situations are all 

current areas of research by our group. We expect that we will include these options in future 



 

 

releases of the M-GCTA software when the parameterization of these extensions to the basic 

model are developed. 

 

Application of the M-GCTA software to simulated data 

In order to compare estimates of maternal and offspring genetic variance components 

obtained from the M-GCTA software against those obtained from standard GCTA, we 

performed a simple data simulation. Following Eaves et al. (Eaves et al. 2014), we simulated 

1000 mother-offspring pairs and an additional 50 singleton individuals to mimic real life 

situations where these singleton individuals would need to be detected and removed before 

analysis. We simulated 250 SNPs that accounted for all of the direct offspring and indirect 

maternal genetic effects and their covariance on the offspring phenotype. SNPs 1 – 125 were 

assigned to have direct genetic effects on an individual’s phenotype when present in their own 

genome and SNPs 76 – 200 were assigned to have indirect effects on an individual’s phenotype 

when present in their mother’s genome. Thus, SNPs 1 – 75 and SNPs 126 – 200 contributed 

exclusively to offspring genetic effects and maternal genetic effects, respectively, while SNPs 

76 – 125 had both offspring and maternal genetic effects on offspring phenotypes. SNPs 201 

to 250 exerted no effects on the offspring’s phenotype. We simulated three scenarios. In 

scenario one, the effects of all shared SNPs (i.e. SNPs 76 – 125) on the offspring’s phenotype 

were in the same direction. In scenario two, the effect of all shared SNPs were in opposite 

directions (for example, SNPs that had a positive maternal genetic effect had a negative 

offspring genetic effect). In scenario three, the effects of 30 out of 50 SNPs were in opposite 

directions whilst the rest of the shared SNPs exerted effects in the same direction. Due to the 

relatively small sample size, we simulated all increasing alleles having high allele frequencies 

sampled randomly from a uniform distribution (between 0.4 and 0.6), and each increasing allele 

exerted a large effect on the simulated phenotype (between 0.45 and 0.55). Across all 

conditions, we added a random normal variate (mean zero, variance four) to the genotypic 

value of each individual to simulate residual and environmental effects. We assumed all genetic 

effects were additive and there were no interactions between maternal and offspring genomes. 

We conducted 1000 simulations for each scenario, and the mean and the standard deviation of 

the parameter estimates from the 1000 simulations were reported. The simulated datasets were 

generated in R (R Core Team 2013), and were then converted to binary PLINK format (Purcell 

et al. 2007) for downstream analysis. For analysis in GCTA (i.e. in order to benchmark our M-



 

 

GCTA software against), we first extracted all mother-offspring pairs (N = 1000), arranged the 

mothers in order of family identifier, and then their offspring below them in exactly the same 

order. Having identified the 50 singleton individuals, we directed GCTA to remove them. We 

created an overall GRM for all individuals (i.e. 2N × 2N = 2000 × 2000) using the GCTA 

software, and then constructed new GRMs indexing genomic sharing between mothers, 

offspring, and between mothers and offspring (i.e. the M, O, and (D + D’) matrices) from the 

appropriate rows of the larger matrix. We then fit the three GRMs in a variance components 

model using the original GCTA software. For comparison, we applied the M-GCTA software 

to the same simulated data. We emphasize that the M-GCTA software fits the same underlying 

variance components model but detects mother-offspring (or father-offspring) pairs in the data, 

removes singleton individuals from the analysis, and constructs the requisite GRMs 

automatically for the user without the need for time consuming and error prone scripting. 

Finally, we compared the results from GCTA and M-GCTA to those from fitting a 

structural equation model implemented in R using the OpenMx software package. We 

parameterized the M-GCTA model two ways in OpenMx. In one formulation we modelled the 

path coefficients in Figure 1 (i.e. m, h, c, and e) and explicitly modelled the constraint 𝜎𝐷 =

𝑚𝑐. In the other, we parametrized the model using a variance components framework in which 

the above constraint was implicit (i.e. similar to how the model is parameterized in GCTA and 

the M-GCTA software). We fitted a series of five models. In the full model we estimated all 

four variance components (𝜎𝑀 , 𝜎𝑂 , 𝜎𝐷 , 𝜎𝐸 ). In the first sub-model we set the covariance 

between maternal and offspring genetic effects to zero. In the second (and third) sub-models 

we further constrained the maternal (or offspring) genetic components to zero. Finally, we 

constrained all variance components responsible for the covariation between mothers and their 

children to zero (𝜎𝑀, 𝜎𝑂, 𝜎𝐷). We calculated twice the difference in log-likelihood between the 

full model and each of the sub-models, and evaluated the difference in relative to the full model 

by (twice the) difference in log-likelihood chi-square. The R code used for performing the 

simulations is included in the Supplementary Materials (Supplementary Material 1). 

 

CPU and Memory Requirements 

To quantify the computational requirements of the M-GCTA software, we simulated 

datasets that ranged in size from N = 3,000 to 15,000 mother-offspring pairs and S = 500,000 

or 1,000,000 SNP markers. We note that this dataset size is representative of the size of cohorts 



 

 

of mother-offspring pairs that currently exist around the world (Evans et al. 2019). The datasets 

were simulated using an approach similar to that described above. For each set of simulated 

datasets, 37.5% of all simulated SNPs contributed exclusively to offspring genetic effects, 

37.5% of SNPs contributed to maternal genetic effects, while the remaining 25% of SNPs 

exerted offspring and maternal genetic effects on offspring phenotypes in the same direction. 

We benchmarked the running time and memory use of the M-GCTA software by running 

simulations on these datasets. Reported run times are the medians of five identical runs using 

20 cores of a 3.2 GHz Intel Xeon E5-2667 v3 processor. 

 

Application of the M-GCTA software to birthweight data in the ALSPAC Cohort 

We applied the M-GCTA software to offspring birth weight data from the ALSPAC 

birth cohort. ALSPAC is an ongoing transgenerational population-based birth cohort study that 

initially recruited 14,541 pregnant women resident in the Bristol area of the U.K. (formerly 

known as Avon) with expected delivery dates between 1 April 1991 and 31 December 1992 

(Fraser et al. 2012; Boyd et al. 2013). It resulted in 14,062 live births, of which 13,988 survived 

to the end of the first year of age. Detailed information has been collected on both mothers and 

children as early as the eighth gestational week and at regular follow-up intervals, using a 

combination of questionnaires, clinical assessments, and health and administrative records. 

Biological samples including DNA have been taken repeatedly, and a wide range of data has 

been generated including genome-wide array, genome sequencing, and DNA methylation data. 

Ethical approval has been obtained from the ALSPAC Law and Ethics Committee, and other 

relevant ethics committees, and written informed consent has been provided by all participants. 

Birth weight was extracted from routine hospital birth records. Details of the ALSPAC data 

are available through a fully searchable data dictionary: 

www.bris.ac.uk/alspac/researchers/data-access/data-dictionary. 

Genome-wide genotyping was performed on maternal and offspring samples using the 

Illumina 660K and HumanHap550 quad SNP genotyping platforms respectively. Detailed 

quality control and genotyping imputation processes have been described previously (Evans et 

al. 2013; Fatemifar et al. 2013). After preliminary data management, we obtained a dataset 

consisting of 8,340 unrelated mothers (i.e., each mother was unrelated with other mothers 

presented in the dataset) and 8,365 unrelated children, with “best guess” genotypes at 2,425,567 

autosomal markers imputed from the HapMap Phase II (release 22) data as the dataset. The 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary


 

 

quality control procedures used to generate this dataset are detailed in Supplementary Figure 

1. 

We first applied the M-GCTA software to this dataset in order to perform data 

management and quality control. We set a threshold for the genetic relationship between 

individuals of 0.025 and M-GCTA removed one from each pair of identified cryptically related 

individuals. This was not applied to the mother-child pairs who will have a genetic relationship 

of ~0.5 (this was confirmed in the datasets), but rather to test that all the mothers in the sample 

are unrelated, the children are unrelated and mothers from pair i and children from pair j are 

unrelated. This command operated in three consecutive steps. First, singletons and mother-

offspring pairs who do not have an offspring phenotype were removed, yielding N = 5,189 

mother-offspring pairs. Second, mother-offspring pairs were ordered according to family 

identifier, and a GRM for all 2N × 2N individuals in the dataset was created. Third, the software 

iteratively excluded one individual from each pair of cryptically related individuals who had 

an estimated relationship > 0.025 while minimizing the overall loss in sample size. This process 

yielded a combined dataset of 4,321 unrelated mother-offspring pairs. Mother-offspring pairs 

with offspring birth weight measures four standard deviations (SD) away from the sex-specific 

mean were removed (11 mother-offspring pairs). Birthweight was adjusted for the first twenty 

principal components, and Z scores were calculated for each sex. Last, we applied M-GCTA 

on the 4,310 mother-offspring pairs and performed the REML analysis to estimate the effects 

of maternal genotypes, offspring genotypes and their covariance on offspring birth weight. 

 

Application of the M-GCTA software to birthweight data in the Norwegian Mothers and 

Children Cohort Study (MoBa) 

The M-GCTA software was applied to birth weight data from the Norwegian Mother 

and Child Cohort Study (MoBa) (Magnus et al. 2016). MoBa is an open-ended cohort study 

that recruited pregnant women from 1999 to 2008. Approximately 114,000 children, 95,000 

mothers, and 75,000 fathers of predominantly Norwegian ancestry were enrolled in the study 

from 50 hospitals all across Norway. Birth weight was measured at the respective hospitals at 

birth. In 2012, the project Better Health By Harvesting Biobanks (HARVEST) randomly 

selected 11,000 triads from MoBa’s biobank for genotyping, excluding children matching any 

of the following criteria: (1) stillborns, (2) deceased, (3) twins, (4) non-existing Medical Birth 

Registry (MBR) data, (5) missing anthropometric measurements at birth in MBR, (6) 



 

 

pregnancies where the mother did not answer the first questionnaire, and (7) missing parental 

DNA samples. In 2016, HARVEST randomly selected a second set of 6,000 triads using the 

same criteria. Ethical approval has been obtained from the MoBa Ethics Board, and other 

relevant ethics committees, and written informed consent has been provided by all participants. 

For the first set of triads, genotyping was performed using Illumina HumanCoreExome-12 

v.1.1 and HumanCoreExome-24 v.1.0 arrays for 7,000 and 4,000 triads, respectively, at the 

Genomics Core Facility located at the Norwegian University of Science and Technology, 

Trondheim, Norway. The second set of triads was genotyped using Illumina Global Screening 

Array v.1.0 for all 6,000 triads at the Erasmus University Medical Center in Rotterdam, 

Netherlands.  

The genotypes were called in Illumina Genome Studio (for the first sample v.2011.1 

and for the second v.2.0.3) using only samples with call rate ≥ 0.98 and GenCall score ≥ 0.15 

for defining cluster positions. We excluded variants with low call rates, signal intensity, quality 

scores, heterozygote excess and deviation from Hardy-Weinberg equilibrium based on the 

following QC parameters: call rate < 98%, cluster separation < 0.4, 10% GC-score < 0.3, AA 

T Dev > 0.025, HWE P-value < 10-6. Samples were excluded based on call rate < 98% and 

heterozygosity excess > 4 SD. Study participants with non-Norwegian ancestry were excluded 

after merging with samples from the HapMap project (ver. 3) to remove ethnic outliers. 

Prior to imputation, the genetic dataset was harmonized with the Haplotype Reference 

Consortium (HRC) v.1.1 imputation panel using the HRC Imputation preparation tool by Will 

Rayner version 4.2.5. Insertions and deletions were excluded. Allele, marker position, and 

strand orientation were updated to match the reference panel. A total of 384,855 and 568,275 

markers remained eligible for phasing and imputation in the first and second sample, 

respectively. Pre-phasing was conducted locally using Shapeit v2.790 to allow for phasing 

utilizing the pedigree data. Imputation was performed on the Sanger Imputation Server using 

the Positional Burrows-Wheeler Transform and HRC version 1.1 reference panel. After 

imputation, to avoid inclusion of poorly imputed markers, only markers genotyped in either of 

the two samples and having a quality score (INFO score) > 0.9 were included in the analysis 

(i.e. genotyped in one sample and imputed with high quality in the other sample). Additionally, 

markers with MAF < 0.01 and HWE p-value < 1 × 10-6 were excluded. No markers had missing 

calls after imputation. After exclusions, 497,187 markers were eligible for analysis. 



 

 

After preliminary data management 13,934 independent mother and child duo pairs 

were available. GCTA was used to filter cryptically related individuals > 0.025 by removing 

one in each pair of samples in mothers and children separately. Additionally, any sample 

missing birth weight or having birth weight 4 standard deviations away from the mean were 

excluded. After data management 7,910 mother-offspring pairs were eligible for analysis. 

Birthweight was z-score transformed and were adjusted for sex, gestational duration and the 

first four ancestry-informative principal components. M-GCTA performed the REML analysis 

to resolve the effects of maternal genotype, offspring genotype and their covariance on 

offspring birth weight. 

 

Meta-analysis 

Estimates of the variance components obtained in the ALSPAC and MOBA cohorts 

were combined using inverse variance weighted meta-analysis of the variance components in 

the R package meta (DerSimonian and Laird 1986; Schwarzer 2007). 

  



 

 

Results 

We used the same simulation strategy to generate small sets of data, containing 1000 

mother-offspring pairs and 50 singletons. We simulated 250 SNPs in total, apportioning 75 

SNPs to have direct offspring genetic effects only on the phenotype, 75 SNPs to have maternal 

genetic effects only on the phenotype, 50 SNPs that had both offspring and maternal genetic 

effects and 50 SNPs that had no effect on the phenotype. Table 1 summarizes the results for 

the simulated mother-offspring pairs across three scenarios (i.e. positive covariance between 

maternal and fetal genetic effects, negative covariance between maternal and fetal effects, and 

a mixture of the two). Estimates of model parameters and test statistics obtained from the M-

GCTA software package were almost identical to those obtained by analysis using standard 

GCTA and through analysis in R using the OpenMx package. Likewise, it did not appear to 

matter whether the model constraint was explicitly or implicitly modelled by the OpenMx 

software, the parameter estimates were the same. All formulations of the M-GCTA model 

appeared to correctly recover the underlying model parameters regardless of whether the 

underlying SNPs influenced the phenotypes in the same direction, different directions, or a 

mixture of the two. Similar results were obtained using an analysis involving father-offspring 

pairs (Supplementary Table 1). 

We assessed the computational performance of the M-GCTA software by running it on 

several simulated datasets of varying size (Figure 3 and Supplementary Table 2). Based on the 

computational costs in standard GCTA-GREML analysis (Yang et al. 2014), it appears as if 

compute time scales 𝑂(4𝑆𝑁2 + 𝑁3)  whereas we estimate that memory required is 

approximately 𝑁 × 𝑆 × 4 × 2 + 𝑁 × 𝑁 × 8 × 7  bytes (where N is the number of mother-

offspring pairs and S is the number of SNP markers). 

We applied the M-GCTA software to 4,310 mother-child pairs from the ALSPAC 

cohort, and found that the child’s genotype (𝜎𝑂
2 = 23%; s.e. = 10%) made a larger contribution 

to the variance in birth weight than either the mother’s genotype (𝜎𝑀
2  = 5%; s.e. = 9%) or twice 

the covariance between the two (𝜎𝐷 = 8%; s.e. = 7%) (Table 2). These results closely match 

estimates from previous studies using the ALSPAC cohort (Horikoshi et al. 2016; Warrington 

et al. 2018b), which reported that maternal and fetal contributions to birth weight were 4% and 

24%, respectively, with a slightly smaller covariance (i.e., 4%) between the two. Similar results 

were found when we applied M-GCTA to 7,910 mother-offspring pairs from the MoBa cohort. 

The maternal genome explained 8% (s.e. = 6%) and fetal genome 29% (s.e. = 6%) of the 



 

 

variation in offspring birth weight (Table 2), with a slightly smaller covariance (i.e., 4% ± 5%) 

between the two. These results are highly consistent with previous reports using the MoBa 

cohort (Warrington et al. 2019). A meta-analysis of M-GCTA results from these two cohorts 

showed that 7% (s.e. = 5%) and 27% (s.e. = 5%) of variance in birth weight were captured by 

assays of maternal and fetal genetic variation, respectively, and an additional 5% (s.e. = 4%) 

of variance was attributable to the covariance between the two. No statistical heterogeneity was 

observed.  



 

 

Discussion 

In this manuscript, we describe M-GCTA, a user-friendly software package that 

implements G-REML methodology for mother (or alternatively father) child pairs with 

genome-wide SNP data. The M-GCTA software package accepts genome-wide SNP data from 

mother (or alternatively father) offspring pairs in PLINK pedigree or binary file format. The 

software allows the user to construct GRMs indexing genetic similarity across the genome 

between parents and offspring enabling the estimation of variance due to maternal (or 

alternatively paternal) and offspring genetic effects. The software also includes several options 

for data cleaning and quality control, including the ability to detect and automatically remove 

one mother-offspring pair from each pair of related individuals. 

We performed several simulations which show that the M-GCTA software package 

calculates the same variance component estimates as GCTA, however it is much less time 

consuming and error prone due to the data cleaning and quality control features included. Our 

simulations also showed that there was no difference in the variance components estimates 

according to whether the 𝜎𝐷 = 𝑚𝑐 constraint was explicitly modelled in OpenMx or implicitly 

modelled in the other formulations. 

There are two key computational steps implemented in the M-GCTA software package, 

building the GRM and estimating the variance components. Accordingly, the compute time 

and memory usage of the M-GCTA software can be estimated by summing the requirements 

of both components. Our results show that current desktops/laptops will not have sufficient 

RAM to run the M-GCTA software on most realistically sized datasets, but that compute 

servers providing larger RAM will probably be adequate. Extrapolating our results, we expect 

that M-GCTA could realistically be used to compute GRMs and estimate variance components 

on N = 50,000 mother-offspring pairs assuming m = 1,000,000 markers genome-wide (i.e. 

which is our estimate of the number of mother-offspring pairs with genome-wide data that are 

currently available worldwide as part of the Early Growth Genetics Consortium (Moen et al. 

2019)) given the computing resources typically available in many modern scientific institutes. 

We applied the M-GCTA software package to offspring birth weight data from a large 

sample of unrelated mother-offspring pairs from the ALSPAC and MoBa cohorts. Birth weight 

is a complex trait, which is likely to be influenced by both maternal and fetal genetic factors in 

addition to the environment (Magnus 1984a; Magnus 1984b; Lunde et al. 2007; Horikoshi et 

al. 2016; Warrington et al. 2019). Using the M-GCTA software we found that the variance in 



 

 

birth weight explained by tagged maternal, and fetal genetic sources of variation and the 

covariance between the two was around 4%, 23% and 9% respectively. Our results suggest that 

fetal genetics are the primary source of individual differences in birth weight that results from 

genetic factors, and that maternal genetic effects contribute to a much lesser extent, consistent 

with previous research (Horikoshi et al. 2016; Warrington et al. 2019). 

It is worth highlighting that the covariance between maternal and fetal genetic sources 

of variation estimated by M-GCTA represents a genetic covariance that has been calculated 

across all SNPs in the GRM. Thus, a positive (or negative) covariance does not necessarily 

mean that all maternal and fetal loci across the genome affect the offspring’s phenotype in the 

same direction, but rather that in aggregate, the overall effect is in a positive (negative) 

direction. Focusing on this aggregate measure means that potentially interesting effects at 

individual loci might be missed. This is illustrated in the simulation results under scenario three 

where 60% of the SNPs with both maternal and offspring effects operated in the same direction 

whereas the other 40% operated in opposite directions, and the overall covariance estimated by 

M-GCTA was negative. Additionally, we report a positive genetic correlation between 

maternal and offspring genetic effects on birth weight, despite the fact that previous work has 

identified at least nine individual loci that exert opposing maternal and fetal effects on birth 

weight putatively through effects on glucose sensing in mother and child (Warrington et al. 

2018a; Beaumont et al. 2018). Thus, it is likely that the opposing instances of these individual 

SNPs are cancelled out by polygenic contributions that exert shared effects on birth weight in 

the same direction (Warrington et al. 2019). The corollary is that users should be careful not to 

constrain variance components to be positive in M-GCTA in order to allow for the possibility 

of negative covariance between maternal and offspring genetic effects. 

Whilst we have used offspring birth weight to illustrate the application of the M-GCTA 

software in this manuscript, our software package will likely be useful for the analysis of many 

other phenotypes, especially perinatal and early developmental traits such as birth length 

(Lunde et al. 2007; Eaves et al. 2014; van der Valk et al. 2014), gestational age (Lunde et al. 

2007; York et al. 2013), crown-heel length and head circumference (Masuda et al. 2002; Rice 

and Thapar 2010; Taal et al. 2012), where large scale GWAS have already been performed and 

maternal and fetal genome-wide SNP data is available in large numbers of participants. As long 

as genome-wide SNP data is available in a relatively large dataset of mother-offspring (or 

alternatively father-offspring) pairs, then it is possible to use this software to resolve maternal 

(or alternatively paternal) and offspring genetic effects. However, the challenge will be in 



 

 

finding enough genotyped mother (or father) offspring pairs with individual level GWAS data 

to run sufficiently powered analyses (Evans et al. 2019). Cohorts with large numbers of mother-

offspring pairs include the Avon Longitudinal Study of Parents and Children (Fraser et al. 

2012; Boyd et al. 2013), the Norwegian MoBa Study (Magnus et al. 2016), the Norwegian 

HUNT study (Krokstad et al. 2012), and the UK Biobank study (Sudlow et al. 2015). 

Although we have focused on estimating maternal effects in this manuscript, as noted, 

our software can alternatively be used to estimate the contribution of paternal genetic effects 

on offspring phenotypes. M-GCTA includes explicit routines for the automatic cleaning and 

analysis of paternal-offspring genotype data, making this process easy for users. Genetic 

variants in the paternal genome can affect their children’s phenotype independently of 

offspring genotype by contributing to the paternally provided environment, a phenomenon 

recently referred to as “genetic nurture” (Kong et al. 2018). Whilst extensive studies have been 

conducted to investigate maternal genetic effects on a variety of offspring phenotypic traits, 

the number of studies examining paternal genetic effects has been low and has often focused 

on investigating the evidence for effects mediated via epigenetic mechanisms (Curley et al. 

2011; Rando 2012). One interesting idea would be to use the estimation of paternal genetic 

effects as a negative control in maternal studies of perinatal phenotypes similar to what has 

been done in traditional observational epidemiological studies (Smith 2008; Smith 2012). 

Paternal genetic effects are unlikely to exert large intrauterine environmental effects on 

offspring phenotypes, but are likely to share the same potential confounding factors (e.g. 

population stratification, assortative mating, etc.) as studies focusing on maternal genetic 

effects. Therefore, for these phenotypes, we would expect stronger evidence for a maternal 

genetic effect, whereas estimated maternal and paternal variance components of similar size 

may indicate the presence of residual confounding in the analysis (Richmond et al. 2014). In 

the future, we intend to expand the M-GCTA model to jointly estimate paternal and maternal 

effects in the same G-REML framework and simultaneously account for any effects due to 

assortative mating. 

We note that the M-GCTA model involves a number of assumptions common to the G-

REML framework including normality of phenotypes, no G×E interactions or non-additive 

genetic effects, and random mating (Eaves et al. 2014). Additionally, M-GCTA estimates of 

maternal and offspring genetic effects might be biased if paternal genetic effects and/or parent-

of-origin effects (POEs) affect the phenotype under study and are not modelled correctly in the 

analysis. For example, paternal genotypes will be correlated 0.5 with offspring genotypes. If 



 

 

paternal genetic effects affect the offspring phenotype then they may incorrectly be modelled 

as offspring genetic effects and bias estimates of the variance components. POEs refer to the 

phenomenon in which the effect of an allele depends on whether it is inherited from the mother 

or the father, the best studied of these effects being genomic imprinting (Guilmatre and Sharp 

2012; Lawson et al. 2013). Thus, estimation of parental genetic effects by incorporating 

maternal (or alternatively paternal) genotypes into the model without further investigation of 

the underlying mechanisms, as what we do in M-GCTA, may capture confounding effects from 

POEs. Although the contribution in phenotypic variation from imprinting has not been fully 

investigated, evidence suggests that less than one percent of the human genome is imprinted 

(Morison et al. 2005; Lawson et al. 2013; Cuellar Partida et al. 2018). Indeed, the G-REML 

methodology can be extended to estimate the proportion of phenotypic variance due to parent 

of origin effects across the genome (Laurin et al. 2018). Similar to M-GCTA, the method 

requires genome-wide SNP information on parent(s) and children in order to determine the 

parental origin of allelic transmissions. Using this method, we have shown that POEs on a 

range of different traits is likely to be very small (Laurin et al. 2018). In theory, a component 

indexing POEs could be added to the M-GCTA model so that POEs and maternal sources of 

variation could be estimated together, but future work is necessary to ensure optimal 

parameterization and the properties of such a combined model. 

Finally, since publication of the M-GCTA method (Eaves et al. 2014), a number of high 

profile procedures that share some similarities to M-GCTA in their methods and/or aims have 

been published in the literature (Kong et al. 2018; Young et al. 2018). Kong et al. (2018) created 

a procedure to detect what the authors term “genetic nurturing effects” of parents on their 

offspring (i.e. these genetic nurturing effects include, but are not limited to, maternal genetic 

effects). The Kong et al approach regresses offspring phenotype on genome-wide polygenic 

scores (Evans et al. 2009) consisting of transmitted and untransmitted alleles. From this 

regression, estimates of the direct effect of alleles and indirect effects through "genetic nurture" 

on the offspring’s phenotype can be obtained. In addition, the authors show how it is possible 

to examine parent of origin effects i.e. whether direct and indirect effects differ between 

paternally and maternally transmitted alleles and whether the presence of assortative mating is 

likely to influence the estimates obtained. A key difference between M-GCTA and the Kong 

et al. (2018) approach, is that the latter utilizes genome-wide polygenic scores (which tend not 

to do an optimal job of tagging information across the genome), whereas M-GCTA summarizes 

genome-wide information more elegantly in the form of genetic relationship matrices. 



 

 

The same group of authors also created a procedure called Relatedness Disequilibrium 

Regression (RDR) which shares many methodological similarities with M-GCTA. RDR 

attempts to estimate heritability (or alternatively SNP heritability) by exploiting variation in 

relatedness between pairs of individuals due to random Mendelian segregation (which by 

definition should be orthogonal to environmental factors). Specifically, RDR first quantifies 

how much more or less related pairs of individuals are compared to what would be expected 

from the relatedness of their parents. Using this information, the authors show how it is possible 

to partition the phenotypic variance into components due to the direct effect of individuals’ 

genotypes on their own traits (i.e. heritability), as well as the variance of the part of the 

environmental component of the phenotype that is correlated with the parental phenotype 

(which include maternal effects and other forms of “genetic nurture”), and the covariance 

between both of these components. However, application of RDR requires thousands of 

genotyped parents of probands (i.e. genotyped mothers, fathers and their offspring), meaning 

that the procedure currently has very limited practical utility. In contrast, M-GCTA only 

requires genotyped mother-offspring pairs (or alternatively father-offspring pairs), meaning 

that the method can be applied much more widely currently (but contingent on the assumptions 

discussed above).In conclusion, in this manuscript we have described a user-friendly tool for 

estimating the proportion of phenotypic variance due to tagged maternal (or alternatively 

paternal) and offspring genetic effects on offspring phenotypes using large studies where 

genome-wide genotype data are available on mother- (or father-) offspring pairs. We applied 

the M-GCTA software package to birth weight using mother-offspring pairs from two large 

population based birth cohorts, the ALSPAC and MoBa studies, and showed how genetic 

variation in birth weight was predominantly due to fetal genetic rather than maternal genetic 

sources of variation. In the future, we expect that the M-GCTA software will be used in the 

genetic analysis of parent-offspring pairs from large cohorts to further enhance understanding 

of parental genetic effects on offspring health-related phenotypes. 
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Figure 1. Path model illustrating the relationship between latent maternal and offspring genetic 

factors and the observed offspring phenotype for a single mother-offspring pair. 𝐺𝑀𝑀 

represents maternal genotypes at loci that exert an effect on the offspring phenotype 𝑃 via path 

𝑚 (i.e. maternal genetic effects). 𝐺𝑀𝐶 represents these same loci in offspring and the degree to 

which these loci affect the offspring phenotype is quantified by the path coefficient c. 𝐺𝐶𝐶 

represents offspring genotypes at loci that induce no maternal effects when present in the 

mother’s genome but contribute directly to the offspring phenotype 𝑃 via path ℎ. Finally, 𝐺𝐶𝑀 

represents the maternal loci that do not affect the offspring phenotype 𝑃. The same latent 

genetic factors in mothers and offspring are expected to correlate 0.5 with each other. Finally, 

𝐸 represents the effect of residual environmental and untagged genetic factors that contribute 

to phenotype 𝑃 through the causal path 𝑒. 
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Figure 2. M-GCTA path model showing the relationship between two unrelated mother-

offspring pairs (e.g. pair i and pair j). The correlations between the latent genetic factors are 

defined as follows: 𝛼𝑖𝑗 is the genomic relatedness coefficients between mothers of pair i and j, 

𝛽𝑖𝑗 is the relatedness coefficient between the offspring of pair i and j, and 𝛿𝑖𝑗  is the relatedness 

coefficients between the mother of pair i and the child of pair j. 
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Figure 3. CPU times and Memory Requirements for the M-GCTA software. CPU times (upper 

panel) and memory use (lower panel) are plotted for runs on subsets of simulated data sets with 

increasing sample size and number of markers (m=500,000 and 1,000,000, respectively). Note, 

the x axis refers to N, the number of mother-offspring pairs, the total number of individuals is 

2N. Reported CPU times are the medians of five identical runs using 20 cores of a 3.2 GHz 

Intel Xeon E5-2667 v3 processor. Reported CPU times are the total time required to compute 

the genetic relationship matrix (GRM) between mothers and offspring, and perform REML 



 

 

analysis. Note that the CPU time and memory use may vary by a small factor as a function of 

the computing environment. Software version: M-GCTA, beta 0.1.1. Numerical data with more 

details are provided in Supplementary Table 2. 



 

 

Table 1. Comparison of variance components estimates from mother-offspring simulated data using the M-GCTA software package, 1 

ordinary GCTA and the OpenMx package. Parameter estimates are presented with standard errors in parentheses (1000 simulations). 2 

Abbreviations: 𝜎𝑀
2  variance due to tagged maternal genetic effects on child’s phenotype, 𝜎𝑂

2 variance due to tagged direct offspring genetic effects, 3 

𝜎𝐷 (twice the) covariance between maternal and offspring genetic effects, 𝜎𝑒
2 variance due to residual effects. Note that 𝜎𝐷 can be positive or 4 

negative, and represents twice the covariance between maternal and offspring genetic effects. lnL refers to the log likelihood. LRT= -2 × (L-L0), 5 

where LRT is the likelihood ratio test, L is the likelihood of the current model and L0 refers to full/saturated model. df is the degrees of freedom 6 

and equals the difference in the number of parameters between the two models. m, h, c, e are the estimated path coefficients in Figure 1. Under 7 

this formulation 𝜎𝑀
2  = m2, 𝜎𝑂

2 = h2 + c2, 𝜎𝐷 = mc, and 𝜎𝐸
2 = e2. 8 

 𝜎𝑀
2  𝜎𝑂

2 𝜎𝐷 𝜎𝐸
2 -2lnL LRT (χ2) df p-value 

Scenario 1 

Simulated values 15.46 (0.71) 15.47 (0.71) 6.15 (1.00) 4.00 (0.18) ─ ─ ─ ─ 

M-GCTA software 

Full model (default) 15.49 (0.81) 15.48 (0.82) 6.16 (0.51) 4.01 (0.25) 3588.435 ─ ─ ─ 

𝜎𝐷 = 0 16.27 (0.81) 16.25 (0.83) ─ 3.93 (0.24) 3619.216 30.781 1 1.44 × 10-8 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 25.45 (1.51) ─ 15.65 (0.84) 4231.646 643.211 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 25.49 (1.52) ─ ─ 15.65 (0.81) 4231.817 643.382 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 41.12 (1.88) 4717.640 1129.205 3 <2x10-16 

Standard GCTA software 

Full Model 15.49 (0.81) 15.48 (0.82) 6.16 (0.51) 4.01 (0.25) 3588.435 ─ ─ ─ 

𝜎𝐷 = 0 16.27 (0.81) 16.25 (0.83) ─ 3.93 (0.24) 3619.216 30.781 1 1.44 × 10-8 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 25.45 (1.51) ─ 15.65 (0.84) 4231.646 643.211 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 25.49 (1.52) ─ ─ 15.65 (0.81) 4231.817 643.382 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 41.12 (1.88) 4717.640 1129.205 3 <2x10-16 



 

 

OpenMx package 

Full Model 15.49 (0.81) 15.48 (0.82) 6.16 (0.51) 4.00 (0.25) 5421.333 ─ ─ ─ 

𝜎𝐷 = 0 16.27 (0.81) 16.25 (0.83) ─ 3.93 (0.24) 5452.130 30.797 1 1.43 × 10-8 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 25.45 (1.51) ─ 15.64 (0.84) 6065.599 644.266 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 25.49 (1.52) ─ ─ 15.63 (0.81) 6065.769 644.436 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 41.08 (1.88) 6552.324 1130.991 3 <2x10-16 

Alternative model specification 

with the constraint 𝜎𝐷 = 𝑚𝑐  

m h c e     

Full Model 3.93 (0.10) 3.60 (0.13) 1.57 (0.14) 2.00 (0.06) 5421.333 ─ ─ ─ 

𝑐 = 0 4.03 (0.10) 4.03 (0.10) ─ 1.98 (0.06) 5452.130 30.797 1 1.43 × 10-8 

𝑚 = 𝑐 = 0 ─ 5.03 (0.35) ─ 3.95 (0.11) 6065.599 644.266 2 <2x10-16 

ℎ = 𝑐 = 0 5.00 (0.72) ─ ─ 3.95 (0.10) 6065.769 644.436 2 <2x10-16 

𝑚 = ℎ = 𝑐 = 0 ─ ─ ─ 6.41 (0.15) 6552.324 1130.991 3 <2x10-16 

Scenario 2 

 𝜎𝑀
2  𝜎𝑂

2 𝜎𝐷 𝜎𝐸
2 -2lnL LRT (χ2) df p-value 

Simulated values   15.50 (0.72)   15.47 (0.71)    -6.20 (1.00)    4.00 (0.18) ─ ─ ─ ─ 

M-GCTA software 

Full model (default) 15.47 (0.83) 15.47 (0.83) -6.16 (0.65) 4.00 (0.25) 3562.294 ─ ─ ─ 

𝜎𝐷 = 0 14.60 (0.80) 14.60 (0.80) ─ 4.10 (0.26) 3595.715 33.421 1 3.71 × 10-9 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 13.16 (1.09) ─ 15.62 (0.83) 4099.941 537.647 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 13.13 (1.08) ─ ─ 15.65 (0.81) 4100.851 538.557 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 28.79 (1.28) 4361.639 799.344 3 <2x10-16 

Standard GCTA software  

Full Model 15.47 (0.83) 15.47 (0.83) -6.16 (0.65) 4.00 (0.25) 3562.294 ─ ─ ─ 

𝜎𝐷 = 0 14.60 (0.80) 14.60 (0.80) ─ 4.10 (0.26) 3595.715 33.421 1 3.71 × 10-9 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 13.16 (1.09) ─ 15.62 (0.83) 4099.941 537.647 2 <2x10-16 



 

 

𝜎𝑂
2 = 𝜎𝐷 = 0 13.13 (1.08) ─ ─ 15.65 (0.81) 4100.851 538.557 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 28.79 (1.28) 4361.639 799.344 3 <2x10-16 

OpenMx package 

Full Model 15.47 (0.83) 15.47 (0.83) -6.16 (0.65) 4.00 (0.25) 5395.222 ─ ─ ─ 

𝜎𝐷 = 0 14.61 (0.80) 14.61 (0.80) ─ 4.09 (0.26) 5428.657 33.435 1 3.68 × 10-9 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 13.16 (1.09) ─ 15.60 (0.83) 5933.860 538.638 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 13.13 (1.08) ─ ─ 15.63 (0.81) 5934.771 539.549 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 28.76 (1.28) 6195.967 800.745 3 <2x10-16 

Alternative model specification m h c e     

Full Model 3.93 (0.11) 3.60 (0.09) -1.57 (0.14) 2.00 (0.06) 5395.222 ─ ─ ─ 

𝑐 = 0 3.82 (0.10) 3.82 (0.10) ─ 2.02 (0.06) 5428.657 33.435 1 3.68 × 10-9 

𝑚 = 𝑐 = 0 ─ 3.61 (0.35) ─ 3.95 (0.10) 5933.860 538.638 2 <2x10-16 

ℎ = 𝑐 = 0 3.62 (0.15) ─ ─ 3.95 (0.10) 5934.771 539.549 2 <2x10-16 

𝑚 = ℎ = 𝑐 = 0 ─ ─ ─ 5.36 (0.12) 6195.967 800.745 3 <2x10-16 

Scenario 3 

 𝜎𝑀
2  𝜎𝑂

2 𝜎𝐷 𝜎𝐸
2 -2lnL LRT (χ2) df p-value 

Simulated values 15.48 (0.72) 15.47 (0.73) -1.21 (1.03) 4.00 (0.18) ─ ─ ─ ─ 

M-GCTA software 

Full model (default) 15.48 (0.81) 15.47 (0.81) -1.26 (0.60) 4.00 (0.25) 3602.236 ─ ─ ─ 

𝜎𝐷 = 0 15.31 (0.78) 15.30 (0.78) ─ 4.01 (0.25) 3603.750 1.514 1 0.11 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 18.07 (1.24) ─ 15.61 (0.78) 4159.793 557.557 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 18.07 (1.29) ─ ─ 15.59 (0.82) 4158.808 556.573 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 33.69 (1.51) 4518.627 916.391 3 <2x10-16 

Standard GCTA software 

Full Model 15.48 (0.81) 15.47 (0.81) -1.26 (0.60) 4.00 (0.25) 3602.236 ─ ─ ─ 



 

 

𝜎𝐷 = 0 15.31 (0.78) 15.30 (0.78) ─ 4.01 (0.25) 3603.750 1.514 1 0.11 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 18.07 (1.24) ─ 15.61 (0.78) 4159.793 557.557 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 18.07 (1.29) ─ ─ 15.59 (0.82) 4158.808 556.573 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 33.69 (1.51) 4518.627 916.391 3 <2x10-16 

OpenMx package  

Full Model 15.48 (0.81) 15.47 (0.81) -1.26 (0.60) 3.99 (0.25) 5435.161 ─ ─ ─ 

𝜎𝐷 = 0 15.31 (0.78) 15.30 (0.78) ─ 4.00 (0.25) 5436.676 1.515 1 0.11 

𝜎𝑀
2 = 𝜎𝐷 = 0 ─ 18.07 (1.24) ─ 15.59 (0.78) 5993.729 558.567 2 <2x10-16 

𝜎𝑂
2 = 𝜎𝐷 = 0 18.07 (1.29) ─ ─ 15.57 (0.82) 5992.741 557.580 2 <2x10-16 

𝜎𝑀
2 = 𝜎𝑂

2 = 𝜎𝐷 = 0 ─ ─ ─ 33.66 (1.51) 6353.112 917.951 3 <2x10-16 

Alternative model specification m h c e     

Full Model 3.93 (0.10) 3.92 (0.10) -0.32 (0.15) 2.00 (0.06) 5435.161 ─ ─ ─ 

𝑐 = 0 3.91 (0.10) 3.91 (0.10) ─ 2.00 (0.06) 5436.676 1.515 1 0.11 

𝑚 = 𝑐 = 0 ─ 4.19 (0.72) ─ 3.95 (0.10) 5993.729 558.567 2 <2x10-16 

ℎ = 𝑐 = 0 4.21 (0.62) ─ ─ 3.95 (0.10) 5992.741 557.580 2 <2x10-16 

𝑚 = ℎ = 𝑐 = 0 ─ ─ ─ 5.80 (0.13) 6353.112 917.951 3 <2x10-16 
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Table 2. Results of applying M-GCTA software on offspring birth weight in the ALSPAC and MoBa cohorts and the meta-analysis of the two. 

Results are presented as standardized variance components. 

 ALSPAC (N = 4310 pairs) MoBa (N = 7910 pairs) Meta-analysis 

Variance component Estimate s.e Estimate s.e Estimate s.e 𝐼2 𝑄 Pheterogeneity 

𝜎𝑀
2  0.05 0.09 0.08 0.06 0.07 0.05 0.0% 0.08 0.78 

𝜎𝑂
2 0.23 0.10 0.29 0.06 0.27 0.05 0.0% 0.26 0.61 

𝜎𝐷 0.08 0.07 0.04 0.05 0.05 0.04 0.0% 0.22 0.64 

𝜎𝐺
2 0.37 0.10 0.40 0.07 0.39 0.05 0.0% 0.06 0.81 

Abbreviations: 𝜎𝐺
2  variance due to total tagged genetic effects on child’s phenotype; 𝜎𝑀

2  variance due to tagged maternal genetic effects; 𝜎𝑂
2 

variance due to tagged offspring genetic effects; 𝜎𝐷  twice the covariance between tagged maternal and fetal genetic sources of variation; 𝜎𝐸
2 

variance due to residual effects; s.e. standard error; 𝐼2 , the I square statistic, measures the proportion of the variability in estimates that is due to 

heterogeneity; 𝑄, the Cochran Q test (standard chi-squared test) statistic for heterogeneity; Pheterogeneity is the corresponding heterogeneity p-value for the Q test 

statistic. 


