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Abstract

Background: Birth weight (BW) is one of the most widely studied anthropometric traits in humans because of its role
in various adult-onset diseases. The number of loci associated with BW has increased dramatically since the advent of
whole-genome screening approaches such as genome-wide association studies (GWASes) and meta-analyses of
GWASes (GWAMAs). To further contribute to elucidating the genetic architecture of BW, we analyzed a genotyped
Norwegian dataset with information on child’s BW (N=9,063) using a slightly modified version of a wavelet-based
method by Shim and Stephens (2015) called WaveQTL.

Results: WaveQTL uses wavelet regression for regional testing and offers a more flexible functional modeling
framework compared to conventional GWAS methods. To further improve WaveQTL, we added a novel feature
termed “zooming strategy” to enhance the detection of associations in typically small regions. The modified WaveQTL
replicated five out of the 133 loci previously identified by the largest GWAMA of BW to date by Warrington et al.
(2019), even though our sample size was 26 times smaller than that study and 18 times smaller than the second
largest GWAMA of BW by Horikoshi et al. (2016). In addition, the modified WaveQTL performed better in regions of
high LD between SNPs.

Conclusions: This study is the first adaptation of the original WaveQTL method to the analysis of genome-wide
genotypic data. Our results highlight the utility of the modified WaveQTL as a complementary tool for identifying loci
that might escape detection by conventional genome-wide screening methods due to power issues. An attractive
application of the modified WaveQTL would be to select traits from various public GWAS repositories to investigate
whether they might benefit from a second analysis.
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Introduction
Birth weight (BW) is known to influence a wide vari-
ety of adult-onset diseases, particularly cardio-metabolic
diseases such as cardiovascular disease and type 2 dia-
betes. Although the findings from genome-wide associa-
tion studies (GWASes) have contributed substantially to
our understanding of the genetic underpinnings of BW,
the genetic variants identified thus far still account for
only a small fraction of the total variance attributable to
additive genetic effects. For example, the largest genome-
wide association meta-analysis (GWAMA) of BW to date
[1] showed that only 28.5 percent of the variance in BW
could be attributed to genetic variants carried by the
fetus. The conundrum ofmissing heritability is a recurrent
theme in genetic studies of complex traits and has spurred
widespread interest in investigating more complex dis-
ease mechanisms than single-SNP associations, such as
parent-of-origin effects, epistasis, and gene-environment
interaction effects. It has also inspired the development
of alternative methods that are more efficient at captur-
ing more of the variants potentially missed by traditional
GWAS methodology.
Based on a recent report [2], a large fraction of the miss-

ing heritability could be accounted for by the covariance
of genetic effects and by SNPs with very small effects. The
current paper focuses on the second part of the problem
and investigates the use of regional tests to identify clus-
ters of SNPs with small effects in large genomic regions.
Statistical methods that can incorporate multi-marker
effects and machine-learning techniques for analyzing
genome-wide genotypic data have been available for some
time (e.g., see [3] and [4]). These and other multi-marker
methods for GWAS, such as the Sequence Kernel Associ-
ation Test (SKAT) [5] and the Burden test [6], only test for
association in small genomic regions ranging from 5 kb to
25 kb [6] and are thus not adequately equipped to exploit
the regional effects of larger stretches of the genome.
To address these limitations, Vsevolozhskaya and col-

leagues [7] explored the use of wavelet-based methods to
screen the entire genome for associations and showed that
such approaches may improve the power for detecting an
association. However, their method was only applicable to
dichotomous traits and the analyses were somewhat lim-
ited due to the small sample sizes (ranging from 50 to 1000
individuals). Here, we extend the analysis of Vsevolozh-
skaya and colleagues and perform a GWAS of a continu-
ous trait, BW, on 9,063 individuals using a wavelet-based
method. To do so, we take advantage of wavelet-based
association methods for quantitative trait locus (QTL)
analysis of functional phenotypes [8–10]. In particular,
we reverse the standard strategy of methods designed to
detect QTL by treating the individual genotypes as func-
tions varying between 0 (homozygous for themajor allele),
1 (heterozygous) and 2 (homozygous for the minor allele)

across the genome and testing these functions for associ-
ations with a univariate phenotype that can be continuous
or binary.
For the current analyses, we use the WaveQTL method

by Shim and Stephens [9] because it is fast and scales
well for genome-wide screening. AlthoughWaveQTL was
originally developed to identify SNPs that influence chro-
matin accessibility, we show that it can easily be adapted
to screen for associations between a function and a trait.
Specifically, we tailor WaveQTL to enable a genome-wide
screening for associations between wavelets and a contin-
uous trait (here, BW). We refer to this extended version of
WaveQTL as “modifiedWaveQTL”, which mainly consists
of partitioning the genome into smaller regions of 1 Mb
in size and testing each region for association with BW. In
addition, we implement a feature termed “zooming strat-
egy” to enhance the detection of associations in typically
small regions in order to improve statistical power while
controlling for false positives. Using the modified Wave-
QTL, we perform a GWAS of BW based on genotypes
from 9,063 children from the Norwegian Mother, father
and Child Cohort Study (MoBa) [11].

Methods
Study population and phenotyping
MoBa is an ongoing nationwide pregnancy cohort study
[11]. Participants in MoBa were enrolled in the study
(1999-2008) from 50 of the 52 hospitals in Norway, and
they are predominantly of Caucasian ancestry. Trained
nurses at the hospitals measured the children’s birth
weight. The genotypes in the MoBa dataset were gen-
erated on randomly selected umbilical-cord blood DNA
samples (N=11,490) from the MoBa biobank [12]. The
exclusion criteria were as follows: stillborn, deceased,
twins, and children with missing data in the Medical Birth
Registry of Norway (MBRN).

Materials, genotyping platform, and imputation
11,490 mother-father-newborn trios in the MoBa dataset
were genotyped using the Illumina HumanCoreExome
BeadChip (San Diego, CA, USA) containing more than
240,000 probes. Principal component (PC) visual checks
for ethnicity were performed to remove ethnic outliers.
For imputation, we used the Haplotype Reference Con-
sortium (HRC) reference data version HRC.r1.1 (http://
www.haplotype-reference-consortium.org/) and the free
genotype imputation and phasing service of the Sanger
Imputation Server (https://imputation.sanger.ac.uk/). For
fast and accurate phasing, the Sanger server uses Posi-
tional Burrows-Wheeler Transform (PBWT) for indexing
multiple sequence alignments across different genomes
[13, 14]. We checked the results of the imputation for
consistency by hard-calling markers with an INFO qual-
ity score larger than 0.7. Additionally, we checked for

http://www.haplotype-reference-consortium.org/
http://www.haplotype-reference-consortium.org/
https://imputation.sanger.ac.uk/
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Mendelian inconsistencies, excess heterozygosity, devi-
ations from Hardy–Weinberg equilibrium (HWE), and
high rates of missingness to ensure that nomajor technical
errors were introduced in the pre-phasing and imputation
steps. A total of 7,947,894 SNPs met the following cri-
teria and were included in the current analyses: call rate
≥ 98%, minor allele frequency (MAF) ≥ 1%, and HWE
test P≥ 104. Samples with a call rate ≤ 98% and with an
excess heterozygosity ≥ 4SD were excluded.

Comparison with other studies
The MoBa dataset used here was included in the largest
GWAMA of BW to date by Warrington et al. (2019) [1].
Our results are therefore not independent of the findings
reported in that GWAMA. To perform an independent
and unbiased comparison, we cross-checked our findings
against those of the next largest GWAMA of BW that
did not include the MoBa dataset, which is the study
by Horikoshi et al. [15]. Horikoshi and colleagues identi-
fied 60 genome-wide significant loci in a multi-ancestry
sample comprising 153,781 genotyped individuals [15].
In terms of sample size, the MoBa dataset used here is
approximately 26 times smaller than the Warrington et
al. study [1], 18 times smaller than the Horikoshi et al.
study [15], and ten times smaller than another published
GWAMA of BW from 2013 [16]. For further validation,
we used the MoBa dataset to compare the performance of
themodifiedWaveQTL against the standardmethodology
used by Horikoshi and colleagues [15].

Application of modified waveQTL
The original WaveQTL by Shim and Stephens [9] tests for
association between an individual function and a covari-
ate of interest using wavelets. Below we provide a brief
description of wavelets and the modeling used in Wave-
QTL. We then provide details of our modified version of
WaveQTL.

Wavelets andwaveQTLmodeling
WaveQTL aims at identifying associations between a pop-
ulation of functions and a univariate phenotype � mea-
sured once per function. WaveQTL tests for association
between the functions and the trait by testing for associ-
ation between the wavelet-transformed function and the
trait. Wavelets are useful mathematical functions for con-
ducting a Fourier-like transform. There are different types
of wavelets [17], and, for the sake of simplicity, we present
here only the most straightforward type of wavelet – the
Haar wavelet. Like Fourier-transform, wavelet transform
allows representing a function as a set of coefficients. The
wavelet transform of a function on a given interval is com-
puted via local integrals of the function. The integrals are
called wavelet coefficients and are computed for regions
of decreasing size, half the size at each step. The wavelet

coefficients are indexed using a two-digit code (s, l), where
the first number, s, corresponds to the scale or the level
of resolution in Fig. 1, while the second number, l, corre-
sponds to the location. We refer the reader to a textbook
by Nason [18] for a more comprehensive introduction to
wavelets and their applications in R.
In essence, WaveQTL tests for association between a

population of functions and the trait using hierarchical
Bayesian modeling that tests (for each wavelet coefficient)
whether the trait is associated with the wavelet coefficient,
with a prior probability p(M0s,l ) = 1 − πs

M0 : G̃sl = βsl,0 + βsl,CC + ε

M1 : G̃sl = βsl,0 + βsl,1� + βsl,CC + ε (1)

Where G̃sl is the wavelet coefficient at scale s and loca-
tion l based on genotype, � is the phenotype of interest
(here, BW), and C is a confounder. The coefficient βsl,1
can be interpreted as the effect of the phenotype on the
wavelet coefficient (sl). Additionally, π is a vector of length
S, with S being the highest level of resolution. Each com-
ponent of π , πs, represents the proportion of wavelet
coefficients at scale s associated with �.
WaveQTL tests for association between the functions

and the phenotype by testing the following hypothesis:

H0 : π = (0, ..., 0) vs H1 : ∃j ∈[ 0 : J] ,πj �= 0 (2)

The significance of π is assessed using the following
likelihood ratio:

�(π , X̃,�) = p(X̃|π ,�)

p(X̃|π ≡ 0,�)
(3)

For additional details on how to assess the significance
of �(π , X̃,�), we refer the reader to the original paper by
Shim and Stephens [9]. For a fast computation of the p-
value, we refer the reader to our recent paper [19].

Main run of themodifiedWaveQTL
Here, we treat each individual genotype as a “signal” and
BW as the univariate continuous phenotype. For every
screened region, we transform the individual genotype
into wavelet coefficients and test for association with BW
using the WaveQTL framework. An association is identi-
fied if the likelihood ratio p-value of a region is below the
Bonferroni threshold.
In our adaptation of WaveQTL to enable the current

GWAS, we used a sliding-window approach to sequen-
tially screen the entire genome for associations.WaveQTL
(and, by extension, the modified WaveQTL) is fast and
reduces the number of tests to be performed by using
overlapping windows of 1 Mb in length. By employing an
alternative modeling to the single-SNP linear regression,
WaveQTL enhances the detection of associations that
are potentially missed by conventional GWAS methodol-
ogy. The original software implementation ofWaveQTL is
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Fig. 1 The SLC45A4 locus detected on chromosome 8. The upper panel is a LocusZoom plot of the locus from the summary data of the Horikoshi et
al. study [15]. To ease readability, the maximum number of rows of gene names was truncated to three. LD was computed using the 1000 genomes
panel data for a population of European ancestry. The lower panel is the output of the modified WaveQTL for the considered locus, and each dot
corresponds to a wavelet coefficient. The size of the dots is proportional to the corresponding Bayes Factor (see Shim and Stephens [9] for details).
The regions highlighted in color correspond to the regions contributing to the association

available at https://github.com/heejungshim/WaveQTL.
The modified WaveQTL is distributed as an R package
on GitHub under the name mWaveQTL. The R package
of the modified WaveQTL includes the zooming strategy
(https://github.com/william-denault/mWaveQTL) and a
comprehensive example of a typical run.

The user has to specify four parameters to run a GWAS
using the modified WaveQTL: i) the region size, ii) the
maximumdistance between two consecutive SNPs, iii) the
level of resolution, and iv) the prior standard deviation
for the wavelet effect size. We recommend using half-
overlapping regions of 1Mb as the “region size” parameter

https://github.com/heejungshim/WaveQTL
https://github.com/william-denault/mWaveQTL
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and a maximum distance between two consecutive SNPs
of 10 kb as the “maximum distance” parameter. Follow-
ing the recommendations of Zhou and Guan [20], we set
the prior standard deviation to 0.2√

(n)
, where n is the num-

ber of samples. Based on these criteria, we defined 5,170
regions spanning the entire genome. In addition, the user
needs to choose the depth of analysis. In Fig. 1, the y-axis
shows how the results of the modified WaveQTL differ
by the depth of analysis. As a rule of thumb, we choose
ten SNPs per wavelet coefficient for the “level of resolu-
tion” parameter. To assign the level of resolution, we set
the depth of our analysis to nine. It is important to select
an appropriate depth of analysis, because an analysis with
insufficient depth might overlook some loci. For example,
we observed that most associated regions in the current
analysis corresponded to a level of resolution of five or
above. These results suggest that using a depth of analysis
of four or less would have resulted in not detecting most
of the loci.

Zooming strategy
One of the main drawbacks of the original WaveQTL is
that the sliding-window size is not easily adjustable. If
the window is too wide, the signal may be lost in the
optimization step due to the large background noise. To
overcome this, we developed a “zooming strategy”. As the
wavelet coefficients generally remain the same except at
the lowest levels, a sub-region can be analyzed using the
Bayes factors computed using a larger window size. We
implemented the following procedure:

• Detect all the regions that have a Bayes factor above a
given threshold (here set to 1).

• For each selected region, extract the sub-region that
contains all the Bayes factors above the set threshold.

• Refit the optimization process in Shim and Stephens
(2015) [9] on this sub-region to estimate the p-value.

A sub-region was considered statistically significant if
the associated p-value was smaller than 0.05

nregion × sizesub−region
sizeregion ,

where nregion is the number of regions initially analyzed
(here 5,170). This significance criterion corresponds to
the multiple-testing correction for a genome-wide screen-
ing based on using regions of the size of the considered
sub-region.

Results
Application of the modified WaveQTL to BW data
We used the modified WaveQTL to perform a GWAS of
approximately eight million SNPs in the imputed MoBa
dataset. We assumed an additive genetic model and
included sex as a covariate in the analysis. The first ten
principal components were also included as covariates to
correct for potential population substructure. Overlap-
ping sliding windows of 1 Mb in size were used to analyze
a total of 5,170 regions spanning the entire genome. Based
on this sliding-window approach, applying a Bonferroni
correction for multiple testing led to a significance cri-
terion of p ≈ 1 × 10−5. For comparison, we performed
a separate GWAS using the traditional additive linear
modeling routinely applied to most GWASes, which we
simply refer to as “single-SNPmodeling”. As with themod-
ified WaveQTL analysis, we assumed an additive genetic
model and adjusted for the same set of variables (sex
and the first 10 principal components) in the single-
SNP modeling. The qq-plot of the p-value is displayed in
Supplementary Figure 1. Finally, to demonstrate the good
calibration of the p-values under the null, we performed
a GWAS using the modified WaveQTL after permuting
the phenotype. The qq-plot of the p-values based on this
analysis is displayed in Supplementary Figure 2.
Table 1 summarizes all the regions in which an associ-

ation was detected by the modified WaveQTL detected.
Figure 2, on the other hand, provides an overview of
the results of the modified-WaveQTL in a genome-wide
context. The modified WaveQTL initially detected three
significant loci for BW, on chromosome 1, 3 and 17
(Supplementary Figure 3-6).We then applied the zooming
strategy to offset the possibility that the modified Wave-
QTLmight havemissed an association in the optimization

Table 1 Summary of the regions detected by the modified WaveQTL

Chr Start (bp) End (bp) Main P-value Corresponding Gene name GWAMA Sample
run correction size

1 43340639 43403139 Yes 5.06 × 10−7 9.67 × 10−6 SLC2A1 [1] 230,069

3 123051305 123133336 Yes 9.81 × 10−8 9.67 × 10−6 ADCY5 [21] 27, 591

3 156785678 156816928 No 7.00 × 10−8 3.04 × 10−7 LOC339894/CCNL1 [16] 61,142

8 142201004 142255692 No 1.01 × 10−7 6.08 × 10−7 SLC45A4 [16] 61,142

17 6965237 7215238 Yes 2.82 × 10−8 9.67 × 10−6 CLDN7/SLC2A4 [15] 153,781

In the column “Main run”, “Yes” corresponds to a region detected using the modified WaveQTL, and “No” corresponds to a region subsequently detected only after applying
the zooming strategy. The column “Corresponding correction” displays the nominal significance level for declaring a region as statistically significant (see Methods for
details). The column “GWAMA” corresponds to the GWAMA in which the locus was first detected. The column “Sample Size” corresponds to the sample size of the GWAMA in
which the locus was first detected. The genomic coordinates are based on the GRCh37 hg19 genome assembly
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Fig. 2 Associations detected by the modified WaveQTL are highlighted in green and are overlaid on the Manhattan plot in the Horikoshi et al. (2016)
study (“Extended Data Figure 2” in that paper). The horizontal line indicates the genome-wide significance threshold of 5 × 10−8 for the single-SNP
modeling. The corresponding threshold for the main run of the modified WaveQTL is 9.67 × 10−6, as highlighted in Table 1

step, which may happen if the background noise becomes
too large (see Methods for more detail). After applying
the new multiple-testing correction for sub-region size
in the zoomed analysis, the modified WaveQTL detected
two additional loci for BW, on chromosome 3 and 8
(Supplementary Figure 4 and Fig. 1). The single-SNP lin-
ear regression did not identify any statistically significant
loci in the MoBa dataset (Supplementary Figure 15).
All the significantly associated loci detected by themod-

ified WaveQTL have previously been reported in other
genetic studies of BW [1, 15, 16, 21]. The gene ADCY5
on chromosome 3 was identified by the first GWAMA
of BW from 2010 [21] in which n = 27, 591 individu-
als were analyzed; LOC339894/CCNL1 on chromosome
3 and SLC45A4 on chromosome 8 were identified by a

GWAMA from 2013 (n = 61, 142) [16]; CLDN7/SCL2A4
on chromosome 17 was identified by a GWAMA from
2016 (n = 153, 781) [15]; and the fifth locus was identified
by the currently largest GWAMA of BW by Warrington
and co-workers (n = 230, 069) [1]. However, as the War-
rington et al. (2019) study included theMoBa dataset used
here, the associations detected by the modifiedWaveQTL
are not independent of that study. Table 2 summarizes
the overlap between our findings and previous GWAMAs
of BW.

Non-replicated loci
Despite the enhanced statistical power, the modified
WaveQTL only detected two of the ten most signifi-
cant loci in the next largest GWAMA of BW to date,

Table 2 Number of loci detected in previously reported GWAS or GWAMA of birth weight and the overlap with results generated from
applying the modified WaveQTL to the MoBa dataset

Sample size Number of Overlap Study name Year Reference
reported loci

9,063 5 NA This study 2021 NA

27,591 2 1 Freathy et al. 2010 [21]

61,142 7 3 Horikoshi et al. 2013 [16]

153,781 60 4 Horikoshi et al. 2016 [16]

230,069 190 5 Warrington et al. 2019 [1]

The column “Sample Size” corresponds to the sample size of the GWAS or GWAMA. The column “Number of reported loci” corresponds to the number of loci replicated in
each GWAMA. The column “Overlap” corresponds to the number of loci in the GWAMA that overlaps with the five loci reported in our current analyses. The column “Study
name” displays the name of the first author for each GWAS or GWAMA and “Year” corresponds to the publication year of the GWAS or GWAMA. All the reported loci in
previous GWAMAs have been reported in the largest GWAMA of BW to date by Warrington et al. [1]



Denault et al. BMC Genomics          (2021) 22:321 Page 7 of 9

by Horikoshi et al. [15], that did not include our MoBa
dataset. Upon closer scrutiny of the 10 most significant
loci in the discovery panel in Horikoshi et al. [15], three
plausible scenarios emerge as to why eight of the loci
might have escaped detection by our approach. The first
describes the situation where there is no association sig-
nal in the MoBa dataset. This, for example, appears to be
the case with the loci neighbouring the genes AC016696.1
(rs17034876), LCORL (rs4144829), PTCH1, and HMGA2
(rs1351394) located on chromosome 2, 4, 9 and 12, respec-
tively (see Supplementary Figure 7, 8, 12 and 14). We
found no clear evidence of an association with these loci
in the modified WaveQTL analysis.
The second scenario pertains to loci in which the sig-

nals are too weak to overcome the multiple-testing bur-
den in the current dataset but that might attain signif-
icance in a larger dataset. This might be the case with
the loci neighbouring the genes ESR1 (rs10872678) and
ADBR1 (rs740746) on chromosome 6 and 10, respectively
(Supplementary Figure 9 and 13). It is also important to
note that the MoBa dataset is roughly 18 times smaller
than the one in Horikoshi et al. [15]. Moreover, the p-
values used for comparison were not corrected for the
winner’s curse, where initial studies tend to overestimate
the true genetic effect size. The relatively small sample
size of the MoBa dataset makes it difficult to distin-
guish whether the lack of detection in the first scenario
was purely due to a cohort-specific effect or due to the
winner’s curse.
The third scenario corresponds to the case where the

association is only with a single SNP. This is exempli-
fied by the sparse signal observed at YTK6 (rs138715366)
on chromosome 7 (Supplementary Figure 11). Thus, a
regional test to detect an association signal from a single
SNP that does not show any linkage disequilibrium (LD)
with neighboring SNPs might not have sufficient power
for detection.

Discussion
This study is the first adaptation of the method origi-
nally described by Shim and Stephens [9] to the analysis
of genome-wide genotypic data. The replication of sev-
eral established loci for BW, even in a sample size 18 and
26 times smaller than those of the two largest GWAMAs
of BW to date [1, 15], suggests that the modified Wave-
QTL may be able to detect genetic associations that are
not detectable by a conventional GWAS of the same sam-
ple size. As a case in point, the locus Solute carrier family
2 member 1 (SLC2A1) was only identified by the modified
WaveQTL (p = 7.3 × 10−6) and the largest GWAMA of
BW to date comprising 230,069 individuals [1]. It should
be noted, however, that the GWAMA by Warrington
and colleagues also included the MoBa dataset; thus, the

results of these two studies are not independent of each
other. The standard single-SNP linear regression based on
an additive model did not detect any genome-wide signif-
icant loci for BW in our dataset. This was not unexpected,
considering the modest sample size of the MoBa dataset
and the known small effect sizes of the SNPs on BW
(Supplementary Figure 15).
The ability of the modified WaveQTL to detect asso-

ciations even with a relatively modest sample size sug-
gests that it may be particularly useful for screening
rare diseases where it is inherently difficult to generate
a sufficiently large sample size suitable for genome-wide
screening. Moreover, the gain in power may be particu-
larly advantageous when examining different subgroups
of a disease that are likely to have distinct etiologies (e.g.,
type 1 and type 2 diabetes [22, 23]). As subgroup analy-
ses further reduce the sample size, themodifiedWaveQTL
may help to offset this limitation by offering a higher sta-
tistical power than the regular single-SNP modeling. The
modified WaveQTL may thus serve as an initial screening
tool for detecting regions harboring significant hits. After
a general screening, standard approaches based on a more
intuitive and interpretable output, such as polygenic risk
scores, can then be applied for downstream fine-mapping
efforts.
The modified WaveQTL performed better in regions

of high LD between SNPs, as opposed to regions in which
only a few SNPs are in strong LD with one another.
This is illustrated by the loci CHR7 and YKT6-GCK
(Supplementary Figure 11). As most of the loci detected
by GWAS or GWAMA exhibit the classical peaks of
p-values that are characteristic of local LD, our modified
WaveQTL is expected to perform better for these types
of regions. An obvious application of the modified Wave-
QTL is to reappraise previously published GWASes to
verify whether some of the loci that might have escaped
detection by conventional GWAS methodology attain
statistical significance with the modified WaveQTL. The
publicly accessible GWAS catalog maintained by the
European Bioinformatics Institute (EBI; https://www.
ebi.ac.uk/gwas/; [24]) and the database of Genotypes
and Phenotypes (dbGaP) maintained by the National
Center for Biotechnology Information (NCBI; https://
www.ncbi.nlm.nih.gov/gap/;[25]) are excellent resources
for selecting traits that might benefit from a second
analysis.

Abbreviations
BW: Birth weight; GWAS: Genome-wide association study; GWAMA:
Genome-wide association meta-analysis; SNP: Single-nucleotide
polymorphism; SKAT: Sequence Kernel Association Test; MoBa: Norwegian
Mother, Father and Child Cohort Study; MBRN: Medical Birth Registry of
Norway; PC: Principal component; HRC: Haplotype reference consortium;
PBWT: Positional Burrows-Wheeler Transform; LD: Linkage disequilibrium; MAF:
Minor allele frequency; HWE: Hardy-Weinberg equilibrium
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