13 research outputs found

    Taking Synchrony Seriously: A Perceptual-Level Model of Infant Synchrony Detection

    Get PDF
    Synchrony detection between different sensory and/or motor channels appears critically important for young infant learning and cognitive development. For example, empirical studies demonstrate that audio-visual synchrony aids in language acquisition. In this paper we compare these infant studies with a model of synchrony detection based on the Hershey and Movellan (2000) algorithm augmented with methods for quantitative synchrony estimation. Four infant-model comparisons are presented, using audio-visual stimuli of increasing complexity. While infants and the model showed learning or discrimination with each type of stimuli used, the model was most successful with stimuli comprised of one audio and one visual source, and also with two audio sources and a dynamic-face visual motion source. More difficult for the model were stimuli conditions with two motion sources, and more abstract visual dynamics—an oscilloscope instead of a face. Future research should model the developmental pathway of synchrony detection. Normal audio-visual synchrony detection in infants may be experience-dependent (e.g., Bergeson, et al., 2004)

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Get PDF
    In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Get PDF
    In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics

    Sleep disturbance at simulated altitude indicated by stratified respiratory disturbance index but not hypoxic ventilatory response

    No full text
    At high altitudes, the clinically defined respiratory disturbance index (RDI) and high hypoxic ventilatory response (HVR) have been associated with diminished sleep quality. Increased RDI has also been observed in some athletes sleeping at simulated moderate altitude. In this study, we investigated relationships between the HVR of 14 trained male endurance cyclists with variable RDI and sleep quality responses to simulated moderate altitude. Blood oxygen saturation (SpO(2)%), heart rate, RDI, arousal rate, awakenings, sleep efficiency, rapid eye movement ( REM) sleep, non-REM sleep stages 1, 2 and slow wave sleep as percentages of total sleep time(% TST) were measured for two nights at normoxia of 600 m and one night at a simulated altitude of 2,650 m. HVR and RDI were not significantly correlated with sleep stage, arousal rate or awakening response to nocturnal simulated altitude. SpO(2) was inversely correlated with total RDI (r=-0.69, P=0.004) at simulated altitude and with the change in arousal rate from normoxia (r=-0.65, P=0.02). REM sleep response to simulated altitude correlated with the change, relative to normoxia, in arousal (r=-0.63, P=0.04) and heart rate (r=-0.61, P=0.04). When stratified, those athletes at altitude with RDI > 20 h(-1) (n=4) and those with < 10 h(-1) (n=10) exhibited no difference in HVR but the former had larger falls in SpO(2) (P=0.05) and more arousals (P=0.03). Neither RDI ( without strati. cation) nor HVR were sufficiently sensitive to explain any deterioration in REM sleep or arousal increase. However, the stratified RDI provides a basis for determining potential sleep disturbance in athletes at simulated moderate altitude
    corecore