4 research outputs found

    Skeletal muscle hypertrophy rewires glucose metabolism: an experimental investigation and systematic review

    Get PDF
    BACKGROUND: Proliferating cancer cells shift their metabolism towards glycolysis, even in the presence of oxygen, to especially generate glycolytic intermediates as substrates for anabolic reactions. We hypothesize that a similar metabolic remodelling occurs during skeletal muscle hypertrophy. METHODS: We used mass spectrometry in hypertrophying C2C12 myotubes in vitro and plantaris mouse muscle in vivo and assessed metabolomic changes and the incorporation of the [U-13C6]glucose tracer. We performed enzyme inhibition of the key serine synthesis pathway enzyme phosphoglycerate dehydrogenase (Phgdh) for further mechanistic analysis and conducted a systematic review to align any changes in metabolomics during muscle growth with published findings. Finally, the UK Biobank was used to link the findings to population level. RESULTS: The metabolomics analysis in myotubes revealed insulin-like growth factor-1 (IGF-1)-induced altered metabolite concentrations in anabolic pathways such as pentose phosphate (ribose-5-phosphate/ribulose-5-phosphate: +40%; P = 0.01) and serine synthesis pathway (serine: -36.8%; P = 0.009). Like the hypertrophy stimulation with IGF-1 in myotubes in vitro, the concentration of the dipeptide l-carnosine was decreased by 26.6% (P = 0.001) during skeletal muscle growth in vivo. However, phosphorylated sugar (glucose-6-phosphate, fructose-6-phosphate or glucose-1-phosphate) decreased by 32.2% (P = 0.004) in the overloaded muscle in vivo while increasing in the IGF-1-stimulated myotubes in vitro. The systematic review revealed that 10 metabolites linked to muscle hypertrophy were directly associated with glycolysis and its interconnected anabolic pathways. We demonstrated that labelled carbon from [U-13C6]glucose is increasingly incorporated by ~13% (P = 0.001) into the non-essential amino acids in hypertrophying myotubes, which is accompanied by an increased depletion of media serine (P = 0.006). The inhibition of Phgdh suppressed muscle protein synthesis in growing myotubes by 58.1% (P < 0.001), highlighting the importance of the serine synthesis pathway for maintaining muscle size. Utilizing data from the UK Biobank (n = 450 243), we then discerned genetic variations linked to the serine synthesis pathway (PHGDH and PSPH) and to its downstream enzyme (SHMT1), revealing their association with appendicular lean mass in humans (P < 5.0e-8). CONCLUSIONS: Understanding the mechanisms that regulate skeletal muscle mass will help in developing effective treatments for muscle weakness. Our results provide evidence for the metabolic rewiring of glycolytic intermediates into anabolic pathways during muscle growth, such as in serine synthesis

    Carbon footprint, non-renewable energy and land use of dual-purpose cattle systems in Colombia using a life cycle assessment approach

    Get PDF
    This is a post-print, peer-reviewed version of an article published in Livestock Science. The final authenticated version is available online at: https://doi.org/10.1016/j.livsci.2020.10433

    Efficient acclimation of the chloroplast antioxidant defence of Arabidopsis thaliana leaves in response to a 10- or 100-fold light increment and the possible involvement of retrograde signals

    Get PDF
    Chloroplasts are equipped with a nuclear-encoded antioxidant defence system the components of which are usually expressed at high transcript and activity levels. To significantly challenge the chloroplast antioxidant system, Arabidopsis thaliana plants, acclimated to extremely low light slightly above the light compensation point or to normal growth chamber light, were moved to high light corresponding to a 100- and 10-fold light jump, for 6 h and 24 h in order to observe the responses of the water–water cycle at the transcript, protein, enzyme activity, and metabolite levels. The plants coped efficiently with the high light regime and the photoinhibition was fully reversible. Reactive oxygen species (ROS), glutathione and ascorbate levels as well as redox states, respectively, revealed no particular oxidative stress in low-light-acclimated plants transferred to 100-fold excess light. Strong regulation of the water–water cycle enzymes at the transcript level was only partly reflected at the protein and activity levels. In general, low light plants had higher stromal (sAPX) and thylakoid ascorbate peroxidase (tAPX), dehydroascorbate reductase (DHAR), and CuZn superoxide dismutase (CuZnSOD) protein contents than normal light-grown plants. Mutants defective in components relevant for retrograde signalling, namely stn7, ex1, tpt1, and a mutant expressing E .coli catalase in the chloroplast showed unaltered transcriptional responses of water–water cycle enzymes. These findings, together with the response of marker transcripts, indicate that abscisic acid is not involved and that the plastoquinone redox state and reactive oxygen species do not play a major role in regulating the transcriptional response at t=6 h, while other marker transcripts suggest a major role for reductive power, metabolites, and lipids as signals for the response of the water–water cycle

    The involvement of the mitochondrial peroxiredoxin PRXIIF in defining physiological differences between orthodox and recalcitrant seeds of two Acer species

    No full text
    Ratajczak E, Stroeher E, Oelze M-L, Kalemba EM, Pukacka S, Dietz K-J. The involvement of the mitochondrial peroxiredoxin PRXIIF in defining physiological differences between orthodox and recalcitrant seeds of two Acer species. Functional Plant Biology. 2013;40(10):1005-1017.Norway maple (Acer platanoides L., orthodox) and sycamore (Acer pseudoplatanus L., recalcitrant) belong to the same genus and grow under similar climatic conditions, but their seeds differ in their tolerance to desiccation. The initial water content (WC) of the seeds used in this study was 50%, and they were dried to 40, 20 and 7%. The mitochondrial peroxiredoxin IIF (PRXIIF) was identified in seeds of both species by immunoblotting. Semiquantitative RT-PCR analyses indicated that the transcript level of PRXIIF in both types of seeds increased during different stages of desiccation and was higher in seeds of Norway maple than in sycamore. General proteome analyses showed important differences between orthodox and recalcitrant seeds. In sycamore seeds that had been desiccated to a 7% WC, the number of protein spots and the levels of those spots were lower than in desiccation-tolerant Norway maple seeds. Post-translational modifications of PRXIIF in seeds at a 50% WC were detected via 2D electrophoresis and subsequent western blot analysis. The detected shift in the pI values (+/- 0.3) in A. pseudoplatanus was possibly caused by phosphorylation because several potential phosphorylation sites were predicted in silico for that protein. The gene and amino acid sequences were obtained and aligned with known sequences of other plant PRXIIF genes and proteins. High values of sequence identity were noted between the PRXIIF protein sequences of Acer species, Populus trichocarpa Torr. & A. Gray and Arabidopsis thaliana (L.) Heynh. The involvement of PRXIIF in defining the physiological differences between desiccation-tolerant and desiccation-sensitive Acer seeds is discussed in the context of its role in mitochondrial redox homeostasis
    corecore