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Abstract 23 

Dual-purpose cattle systems (DPS) include more than 75% of all dairy cows in Latin America and produce 40% 24 
of total milk production. Colombia has the fourth largest cattle herd in Latin America, and DPS account for 25 
39% of the cattle population, and 58% of national milk production. Therefore, focusing on reducing the 26 
carbon footprint of DPS can have a huge contribution on mitigating the environmental impacts of the cattle 27 
farming sector. The present study aimed to estimate, based on a farm gate life cycle assessment (LCA) 28 
approach, the environmental impact of 1313 dual-purpose farms in Colombia. The study also aimed at 29 
identifying the main hotspots of negative environmental impacts and proposing possible mitigation options 30 
and their cost-effectiveness. The impact categories such as carbon footprint (CF), non-renewable energy use, 31 
and land use were estimated using the 2019 Refinement to 2006 IPCC, databases, and locally estimated 32 
emission factors. Three methods of allocating environmental burdens to meat and milk products were 33 

applied. A principal component multivariate analysis (PCA) and a Hierarchical Clustering on Principal 34 
Components (HCPC) were performed. The largest source of GHG in dual-purpose cattle systems comes 35 
directly from enteric fermentation, and manure deposited on pasture. The proportion of environmental 36 
burdens allocated to meat differed, with the economic method assigning the greater burden (36%), followed 37 
by energy content (30%) and mass production (13%). Four farms clusters and two production strategies were 38 
identified, a more intensive strategy with high proportion of improved pastures and higher fertilizer 39 
application rates (Clusters 1 and 2), and a more extensive with low input of fertilizers and grazing on natural 40 
pastures (Clusters 3 and 4). Carbon footprint (CF) values ranged between 2.2 and 4.4 kgCO2-eq per kg fat and 41 
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protein corrected milk (FPCM) and between 9.5 and 19.5 kgCO2-eq per kg meat among clusters. CF, land use, 42 
and non-renewable energy use were lowest for clusters 1 and 3. Concerning cost-effectiveness, the adoption 43 
of improved pastures is a negative-cost measure and a promising climate change mitigation option. Overall, 44 
the CF could be reduced by around 25 to 48% for milk and meat. Therefore, our results suggest that it is 45 
possible to reduce GHG emissions by adopting improved pastures, better agricultural management practices, 46 
efficient fertilizer usage, and using the optimal stocking rate. It is expected that these reductions can be 47 
achieved with at negative costs. 48 

Keywords: Colombian cattle systems; environmental impact; global warming potential, greenhouse gases 49 
(GHG); livestock production systems; Mitigation 50 

1. Introduction 51 

By 2050, the global demand for animal products is expected to increase by more than 70% compared to the 52 
demand in the year 2010, due to accelerated population growth and increased individual incomes. 53 
Consequently, the livestock sector should increase production levels to satisfy the demand increase (Steinfeld 54 
et al., 2006). Yet, increasing production levels following a business as usual (BAU) approach would lead to 55 
increased greenhouse gas (GHG) emissions and greater use of natural resources. Therefore, livestock 56 
producers must adopt cost-effective and climate-friendly practices to increase their productivity, while also 57 
reducing their negative environmental impacts. 58 

Dual-purpose cattle systems (DPS) constitute more than 75% of all dairy cows in Latin America, and are 59 
responsible for 40% of total milk production (Rivas and Holmann, 2002). DPS are defined as cattle production 60 
systems where the objective of the farmer is to derive economic benefits from the sale of both milk and 61 
meat. Specifically,  cows are partially milked, and the residual milk is consumed by their calves (Rojo-Rubio 62 
et al., 2009). In Latin America, DPS based on extensive grazing systems, where the herd of cattle are 63 
maintained exclusively on pastures, with little or no use of external inputs. Consequently, production levels 64 
are low in comparison to specialized dairy systems (González-Quintero et al., 2020). 65 

Colombia has the fourth largest cattle herd in Latin America (FAO, 2013), which in 2019 was comprised of 66 
27.3 million heads with an annual milk and beef production of 7.3 million liters and 933 million kg, 67 
respectively (FEDEGAN, 2019). In Colombia, DPS account for 35% of the cattle population, and 58% of 68 
national milk production of the regular market. Most of the Colombian DPS farms are characterized by large 69 
natural open pastures, using low amounts of inputs and having low milk production per lactation (3.5 L cow-70 
1 day-1) (Carulla and Ortega, 2016; González-Quintero et al., 2020). 71 

The Colombian government is committed to reduce the national GHG emissions by 20% from the national 72 
BAU scenario between the baseline year 2010 and the year 2030 (Gobierno de Colombia, 2015). This goal 73 
has underscored the need for implementing mitigation actions focusing on the productive sectors that 74 
contribute a large proportion of the GHG emissions. In Colombia, agriculture is responsible for 26% of 75 
national GHG emissions, and ruminant enteric fermentation contributes more than 31% of the GHG 76 
emissions attributed to the agriculture sector (IDEAM et al., 2016). Therefore, mitigation efforts to effectively 77 
reduce GHG emissions and meet the set targets should, inevitably, consider the Colombian cattle production 78 
sector. 79 

Life cycle assessment (LCA) allows for the compilation and appraisal of inputs, outputs and potential 80 
environmental impacts of a product throughout its life from cradle to farm gate or to grave  (Guinée, 2002). 81 
Worldwide, several studies have used the LCA methodology for the integral assessment of the environmental 82 
impacts and the identification of hotspots as well as enabling the identification of mitigation options for the 83 
activities with the higher impacts  (Cardoso et al., 2016; Oishi et al., 2013; Rotz et al., 2016; Sejian et al., 2018; 84 
Styles and Jones, 2008; Thomassen et al., 2008b; Weiler et al., 2014). However, there are no studies that 85 
have evaluated the environmental performance of the Colombian DPS especially with data collected directly 86 
from producers, and in the Latin American region, studies that have assessed the carbon footprint of DPS are 87 
few (Gaitán et al., 2016; Mazzetto et al., 2020). To our knowledge, this study uses the largest number of farms 88 
for LCA’s in DPS, dairy and beef systems in the world. The general lack of comprehensive studies makes it is 89 
difficult to establish appropriate GHG mitigation actions for the DPS. Such comprehensive studies would 90 
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inform the development of more sustainable livestock farming systems and contribute to the 91 
accomplishment of national GHG emission reduction targets. 92 

The present study aims to (1) estimate the environmental impact of dual-purpose farms quantified based on 93 
GHG emissions, non-renewable energy use, and land use (LU), using a farm gate LCA approach with data 94 
gathered directly from the farms in Colombia; and (2) to identify the main hotspots of negative 95 
environmental impacts; and propose possible mitigation options and their cost-effectiveness. 96 

2. Materials and methods 97 
2.1 Life cycle assessment approach 98 

A LCA approach was used to assess the carbon footprint (CF; GHG emissions per kg product), non-renewable 99 
energy use, and land use of DPS in Colombia. The LCA was done by the attributional method, which aims to 100 
quantify the environmental impact of the main co-products of a system in a status quo situation (Thomassen 101 
et al., 2008a). The publicly available specification (PAS, 2050: 2011) (BSI and Carbon Trust, 2011) was used, 102 
which is based on LCA and allows the quantification of GHG emissions in the life cycle of products. Modelling 103 
was done with Microsoft Excel. For estimating CF, global warming potentials for a time-frame of 100 years 104 
were used: 28 for methane; 265 for nitrous oxide; and 1 for carbon dioxide (IPCC, 2014). 105 

2.1.1 Goal and Scope 106 
2.1.1.1 System boundary definition 107 

The system boundary was defined by the environmental impacts related to the DPS in a “cradle to farm-gate” 108 
perspective (Figure 1). The direct or primary emissions are those generated within the farm system (on-farm) 109 
and the secondary (off-farm) emissions are those upstream emissions related to the production and 110 
transport of imported resources such as feed, fertilizer, and amendments to soils (BSI and Carbon Trust, 111 
2011).  112 

 113 
Figure 1. System boundaries and flows accounted for in the estimation of the impact categories in the DPS 114 
in a “cradle to farm-gate” approach  115 

2.1.1.2 Functional unit and allocation 116 
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The functional units used were 1 kg fat and protein corrected milk (FPCM) and 1 kg live weight gain (LWG) 117 
leaving the farm gate.  118 

When a process produces more than one output, the environmental burden must be assigned between those 119 
outputs based on an allocation method (BSI and Carbon Trust, 2011). To divide the environmental burden 120 
between milk and meat three methods were used (Rice et al., 2017):  121 

a) Economic allocation that was based on the price per kg and the total amount of milk (FPCM) and 122 
meat (LWG) produced per year.  123 

b) Energy allocation that was based on the energy content (MJ) and the total amount of milk (FPCM) 124 
and meat (LWG) produced per year.   125 

c) Mass allocation was based on the quantity of milk (FPCM) and live weight gain (LWG) produced per 126 
year. 127 

2.1.2 Life Cycle Inventory and impact assessment 128 
2.1.2.1 Farm data 129 

The present study includes data collected by using surveys conducted on 1313 farms located in 13 130 
Departments within Colombia. The data represent one calendar year and were collected during the period 131 
2014 to 2015 by 2 projects: Ganadería Colombiana Sostenible and LivestockPlus. The criteria used to select 132 
these farms, the information included in the surveys, the main characteristics of farms, and the description 133 
of the study area were specifically described by González-Quintero et al. (González-Quintero et al., 2020).  134 

Milk production was standardized to fat (3.7%) and protein (3.3%) corrected milk (FPCM) (Carulla and Ortega, 135 
2016). Live weight gain (LWG) was quantified as weight (kg) of animals produced from the farm, assuming no 136 
change in size of stock on the farm and no animals bought into the farm. Gross energy concentration was 137 
calculated from daily gross energy (GE) intake estimated for each animal category based on diet digestibility 138 
and daily net energy requirements for maintenance, activity, growth, lactation, and pregnancy. Dry matter 139 
intake (DMI) was computed by dividing herd specific gross energy intake values by the energy density of the 140 
feed (18.45 MJ per kg DM)(IPCC, 2019). Pasture productivity (t DM ha-1 yr-1) and nutrient content and 141 
digestibility (%) were estimated based on (i) the region and municipality where the farm was located into the 142 
country, (ii) the identification of the main types of pastures for each region by using the atlas of bovine 143 
production systems in Colombia (Pulido-Herrera et al., 2005), and (iii) expert criteria. Use of fertilizer and 144 
lime was expressed as the amount applied over an area (ha) of improved pasture. 145 

The average and the 5th, 25th, 50th, 75th and 95th percentiles of the variables used to describe the farms are 146 
presented in Table 1.  147 

Table 1 148 
Farm characteristics based on the 1313 farms located 13 states in Colombia. 149 

 Dual-purpose cattle farms (n = 1313) 

  Mean 
5th 

percentile 25th  50th  75th  95th  

Herd, number of animals       
Cows 25 2 5 12 26 85 
Female calves (0-1 year) 8 0 1 4 8 26 
Male calves (0-1 year) 7 0 1 3 7 25 
Female calves (1-2 year) 6 0 0 1 6 30 
Male calves (1-2 year) 5 0 0 0 3 21 
Heifers (2-3 years) 6 0 0 1 6 29 
Steers (2-3 years) 2 0 0 0 0 10 
Bulls, no 1 0 0 1 2 4 
Male and female calves less 1 yr + heifers (1-3 yr) + 
Young bulls (1-3 yr), no per cow 

2 0 1 1.3 2 4 

FPCMa, kg cow-1 year-1 1316 571 1028 1199 1570 2385 
Live weight gain, kg AU-1(b)year-1 101 50 72 93 120 181 
Molasses, kg AU-1 yr-1  96 0 0 131 172 196 
Maize silage, kg AU-1 yr-1 88 0 0 0 201 256 
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Mineral salt, kg AU-1 yr-1  31 0 31 33 35 39 
Gross energy, MJ day-1 AU-1 225.1 159.8 196.0 222.2 250.8 301.3 

Dry matter intake, T AU-1 yr-1 4.4 3.2 3.9 4.4 5.0 6.0 

Land       

Area, ha 45 4 8 16 39 181 
Improved pastures, % of area 22.0% 0.0% 0.0% 0.0% 42.3% 93.0% 
Silvopastoral systems, % of area 0.31% 0% 0% 0% 0% 0% 
Natural pastures, % of area 77.7% 6.9% 57.1% 100% 100% 100% 
For improved pastures       
    Fertilizerc, kg ha-1 yr-1 156 25 119 119.32 180.23 350 
    Dolomite lime, kg ha-1 yr-1 315 25 25 150 350 1500 
    Agricultural lime, kg ha-1 yr-1 209 25 25 75 250 750 
Production of pasture, T DM ha-1 yr-1 9.9 8.0 8.0 8.0 11.5 14.6 
Farm       

Stocking rate, AU ha-1 1.44 0.26 0.65 1.18 2.05 3.41 
Diesel, L ha-1 yr-1 1.42 0.13 0.50 1.02 1.89 3.79 
a FPCM: Fat Protein Corrected Milk (3.7% fat, 3.3% protein) 
b AU: Animal Unit (1 AU being either 1 cow, or 3.3 female and male calves less than 1 year, or 1.7 female and male 
calves 1 - 2 yr, or 1.3 heifers 2-3 yr, or 1.3 steers 1- 2 yr, or 0.8 bulls) 
c Fertilizer: 31(N): 8(P): 8(K) 

2.1.2.2   Estimation of on-farm and off-farm emissions 150 

Estimations of primary and secondary emissions were performed on an annual basis using 2019 Refinement 151 
to 2006 IPCC (IPCC, 2019). Equations and emission factors (EF) used for the estimation of the primary 152 
emissions of CH4 and N2O for each pollutant are summarized in Table 2. 153 

 154 
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Table 2 155 

Emission factors (EF) for estimation of on – farm emission from dual-purpose farms 156 

Pollutant Source Amount Reference 

CH4 Enteric CH4 = [GE × (Ym/100) × 365)/55.65] Equation 10.21 in IPCC (Gavrilova et al., 
2019)   

GE = [(NEm + NEa + NEl + NEp/REM) + (NEg /REG]/(DE%/100) Equation 10.16 in IPCC (Gavrilova et al., 
2019) 

  Ym: 0.07 (IPCC, 2019)  
Manure pasture CH4 = VS × B0 × 0.67 × MCF/100 × MS Equation 10.23 in IPCC (Gavrilova et al., 

2019)   
VS = [GE × (1 − DE/100) + (UE × GE)]× [(1 − Ash)/18.45] Equation 10.24 in IPCC (Gavrilova et al., 

2019)   
DE: feed digestibility 

 

  MCF pasture: 0.47 (Gavrilova et al., 2019) 
  Bo: 0.19 (Gavrilova et al., 2019) 
N2O-N direct Pasture (excretions and 

fertilizer) 
N2O-N = (FSN × EF1) + (Nex × EF3PRP, CPP) Equation 11.1 in IPCC (Gavrilova et al., 

2019)   
EF1: 0.01 Table 11.1 in IPCC (Gavrilova et al., 

2019) 
  EF3PRP, CPP: 0.004 Table 11.1 in IPCC (Gavrilova et al., 

2019)   
Nex = Nintake − Nretention Equation 10.31 in IPCC (Gavrilova et al., 

2019)   
Nintake: DMI × (CP%/100/6.25) Equation 10.32 in IPCC (Gavrilova et al., 

2019)   
Nretention: [(Milk x (Milk PR%/100)/6.38] + {WG x [268 - (7.03 x Neg/WG)]/(1000 x 
6.25)} 

Equation 10.33 in IPCC (Gavrilova et al., 
2019)   

Milk PR%: [1.9 + 0.4 x %Fat] 
 

N2O-N 
indirect 

Pasture (From NH3) N2O-N = [(FSN × FracGASF) + (FPRP × FracGASM)] × EF4 Equation 11.9 in IPCC (Gavrilova et al., 
2019) 

  FracGASF Ammonium-based: 0.08 (0.02 − 0.3)  Table 11.3 in IPCC (Gavrilova et al., 
2019) 

  FracGASM: 0.21 (0.00 − 0.31)  Table 11.3 in IPCC (Gavrilova et al., 
2019)   

EF4: 0.01 (0.002 − 0.05) Table 11.3 in IPCC (Gavrilova et al., 
2019) 

CO2-C direct Lime application CO2-C = (MLimestone x EFLimestone) + (MDolomite x EFDolomite) Equation 11.12 in IPCC (Gavrilova et al., 
2019) 
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EFLimestone: 0.12 

 
  

EFDolomite: 0.13 
 

 
Diesel fuel consumption CO2-C = Fuel consumption x EFDiesel 

 

    EFDiesel: 2.23 kg CO2eq L-1 diesel-1 UPME (2016) 

 

157 
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158 

The amount of organic dry matter in manure was calculated from the herd specific gross energy intake; 159 
digestibility of feed consumed; default values for ash content in dry matter and CH4 producing capacity; and 160 
the methane conversion factor.  161 

A nitrogen balance at farm level was made to check for possible N surplus and thus risk of N leaching. For 162 
each farm, surplus of N was quantified and expressed in kilogram N applied per ha. N input was estimated 163 
by multiplying the amount of each input purchased by its percent N content. Annual N deposition was 164 
assumed by a standard (15 kg N ha-1) (Bobbink et al., 2010), and N fixation was set as zero. The N outputs 165 
were estimated by multiplying the amount of milk and live weight produced by their N content. The 166 
difference between the N surplus at farm level and the N lost by gaseous emissions was too low for most of 167 
farms, therefore, N loss from manure and N fertilizers through leaching of the N was assumed to be negligible. 168 
Emissions from livestock respiration (Steinfeld et al., 2006) and the variation in soil carbon stocks at farm 169 
level were not taken into account.  170 

Emission factors (EF) used for the estimation of the secondary emissions from imported feeds and fertilizers 171 
are summarized in Table 3. These GHG emissions corresponded to production and transport of these 172 
agricultural inputs. 173 

Table 3  174 
Estimation of off-farm emissions, energy use, and land use for dual-purpose-farms 175 

Input GWP (kgCO2 eq kg-1 input) 
Energy demand (MJ kg-1 

input) Land use (m2 kg-1 input) 

Synthetic nitrogen 
fertilizer 

    

Na 6.6 43.6 --- 

Pb 3.6 55.7 --- 

Kb 0.7 8.1 --- 

Limea 0.03 0.7 --- 

Maize silageb 0.0762 0.963 0.237 

Mineral saltc 0.155 1.92 --- 

Molassesa 0.871 4.36 0.584 

Transportb 254* 3.62** --- 
aAgri-footprint, 2015 
bEcoinvent 3, 2013 
cELCD: European Life Cycle Database 
* kgCO2 eq t-1 km-1; ** Mj t-1 km-1 

2.1.2.3 Non-renewable energy use and land use 176 

Energy used for consumption of fossil fuels on-farm and transportation of inputs from factory to farm, were 177 
calculated according to the Planning Unit of the Mines and Energy of Colombia (UPME, 2016), and the 178 
Ecoinvent database (Weidema et al., 2013). Off-farm energy requirements related to the production of 179 
agricultural inputs were estimated by using specific factors obtained from Agri-Footprint, Ecoinvent, and 180 
European Life Cycle  Reference Databases (Durlinger et al., 2014; Weidema et al., 2013) as shown in Table 3. 181 

The land use was calculated as the sum of the on-farm grazing area, and the area off-farm required to 182 
produce the purchased feeds. The grazing area was obtained from the surveys of each farm, and the off-farm 183 
area from Agri-Footprint database and Ecoinvent database as shown in Table 3.  184 

2.2 Statistical Analyses 185 

Results are presented as means, minimum and maximum values. A principal component multivariate analysis 186 
(PCA) was performed with the PCA procedure from the FactoMineR package (Husson et al., 2015). This shows 187 
relationships among total environmental impacts (CF, land use, and non-renewable energy use) per kilogram 188 
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FPCM and kilogram LWG resulted from economic allocation, and several quantitative variables (kg FPCM cow-189 
1 year-1; kg FPCM ha-1 year-1, kg LWG-1 year-1 ; kg LWG ha-1 year-1, stocking rate, % of area under improved 190 
pastures, kg fertilizer ha-1 yr-1, feed purchased as % of DMI, T forage production DM ha-1 yr-1, and L diesel 191 
consumption ha-1 year-1). To perform a numerical classification of farms, a Hierarchical Clustering on Principal 192 
Components (HCPC) was done with the HCPC procedure from the FactoMineR package (Husson et al., 2015). 193 
The Ward algorithm was used to build the tree, and then the k-means consolidation to establish the clusters. 194 
For each cluster, average of farm characteristics and environmental impacts were computed. In addition, a 195 
nonparametric approach of Kruskal-Wallis was used to determine differences among clusters, followed by a 196 
post hoc test using the Kruskal-Nemenyi test (Pohlert, 2016). 197 

2.3 Mitigation measures and economic analysis 198 

Scenario analysis was conducted by introducing improvement strategies for analyzing possible future 199 
technological changes that lead to GHG emissions reductions. The selection of these strategies was based on 200 
the characteristics of clusters identified, literature review and expert opinion (Bogaerts et al., 2017; Cardoso 201 
et al., 2016; Mazzetto et al., 2015). In the scenario analysis, we considered as a mitigation measure the 202 
establishment of improved pastures to increase forage yield and the stocking rate and improve the forage 203 
quality on-farm. In addition, the adoption of electric fences that allow rotational grazing was also considered 204 
as a good pasture management practice that could be adopted by farmers in conjunction with the mitigation 205 
measure. We evaluated the adoption of improved pastures only in the area necessary for producing the 206 
current forage demand of cattle, which is less than the current area that farmers use for cattle rearing 207 
activities, and by this, the stocking rate can increase. We assumed the establishment of a forage plant with 208 
dry matter digestibility equal to 65%, crude protein content of 12%, dry matter productivity of 35 T ha yr-1, 209 
and that can be implemented in the low tropics (< 1200 masl).  210 

Additionally, we estimated the relative costs of the establishment and maintenance of improved pastures 211 
and electric fence, and the quantities of GHG emissions that would be reduced after implementing these 212 
measures. Consequently, we were able to quantify the economic benefits associated with achieving 213 
reductions in GHG emissions. The GHG emissions reductions of this measure were estimated as the annual 214 
average of the difference between the total GHG emissions of the baseline scenario and the total emissions 215 
under the scenario based on the adoption of the different mitigation measures  (de Oliveira Silva et al., 2015). 216 
For estimating the GHG emissions from electric energy use by operation of electric fences, we used an 217 
electricity consumption of 42 kWh ha-1 yr-1 (Gutiérrez et al., 2018), and an emission factor for electric energy 218 
use in Colombia of 0.199 kgCO2 kWh-1 (UPME, 2016). The cost-effectiveness of the mitigation measures was 219 
estimated as the difference between the gross margin in the baseline and the gross margin in the scenario 220 
with the mitigation measure implemented, divided by the GHG emissions reductions. The gross margin in 221 
both scenarios was estimated as the difference between the revenues and expenses of farms in a period of 222 
one year. Revenues come only from the hypothetical sale of all live weight (LW), and all milk produced per 223 
farm per year. Prices of milk and meat sold were obtained from the Colombian National Cattle Ranchers 224 
Federation (FEDEGAN, 2019). Farm expenses were composed of investment and maintenance costs for the 225 
implementation of improved pastures and electric fence. The associated costs for the establishment and 226 
maintenance of this measure was calculated according to Gutierrez et al. (2018), which accounted for farm 227 
operations and quantities of inputs required (e.g., land adaptation, seeding, fertilizers, amendments to the 228 
soil, forage seed, and electric fence). 229 

3. Results and discussion 230 
3.1 Nitrogen balance 231 

Nitrogen surpluses obtained at the farm gate are usually attributed to N lost by gaseous emissions (i.e. NH3, 232 
N2O and NOX), leaching and runoff of nitrate to surface or groundwater, and soil N stock changes (Penati et 233 
al., 2011). Due to the low amounts of inputs and low stocking rates, the DPS was characterized by low N 234 
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surplus per ha (14.7 kg N ha-1 year-1) in most of the farms used in the current study. In comparison high input 235 
farms used as much as 186 kg N ha-1 year-1 (Penati et al., 2011). In some farms, the main N input was the 236 
atmospheric deposition (15 kg N ha-1), as purchased N fertilizer was low (11 kg N ha-1 year-1). The mean N 237 
outputs in milk (6.5 kg N ha-1 year-1) and meat (6.0 kg N ha-1 year-1) were similar, which reflects the dual–238 
purpose orientation of the farms. On average, the total N surplus was 15.0 kg N ha-1 year-1, at the same time, 239 
direct and indirect N emissions were 15.9 kg N ha-1 year-1. These results are comparable to those of Penati et 240 
al. (2011) for Italian extensive highland dairy systems (6.4 kg N ha-1 year-1), which are characterized by the 241 
low N inputs. 242 

3.2 Annual methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions 243 

Emissions from enteric fermentation was the main source of CH4 emissions, while the contribution of manure 244 
deposited on pastures was very small (Table 4). This behavior is typical for extensive cattle systems in the 245 
Latin American tropical region where excreta management is rare (Cerri et al., 2016; Gaitán et al., 2016; 246 
Mazzetto et al., 2020).  247 

Table 4 248 
Annual methane (CH4) emission from farm production estimated using both the IPCC’s 2006 and 2019 Refinement to 249 
the IPCC’s 2006 greenhouse gas inventory guidelines 250 

  Dual purpose cattle farms (n = 1313) 

 2019 Refinement to IPCC 2006 inventory guidelines 

  Mean Min Max 

Enteric fermentation    
Herd, kg CH4 per AUa 103.3 (99%) 52.2 181.1 

Manure    
Pasture, kg CH4 per AU 1.3 (1%) 0.6 2.4 

Total, kg CH4 per AU 104.6 52.8 183.5 
a AU: Animal Unit (1 AU being either 1 cow, or 3.3 female and male calves less than 1 year, or 1.7 female and male 
calves 1 - 2 yr, or 1.3 heifers 2-3 yr, or 1.3 steers 1- 2 yr, or 0.8 bulls) 

In general, we observed that direct N2O emissions from excreta deposited on grazed pastures were the main 251 
source of N2O emissions (51%), while indirect N2O emissions from volatilization of NH3 amounted to 28.7% 252 
of total emissions, mostly coming from animal excreta (27%) (Table 5). The contribution of fertilizers, in both 253 
direct and indirect emissions, was too low mainly due to the low adoption of this practice. 254 

Table 5  255 
Annual nitrous oxide emissions (N2O) from the farm production 256 

  Dual purpose cattle farms (n = 1313) 

 2019 Refinement to IPCC 2006 inventory guidelines 

  Mean Min Max 

Directly (kg N2O-N per ha)    

Manure (pasture) 0.3 (51%) 0.01 1.0 
Fertilizer 0.1 (20.3%) 0 6.2 

Indirectly (kg N2O-N per ha)    

From NH3 (excretions) 0.1 (27%) 0.003 0.5 
From NH3 (fertilizer) 0.01 (1.7%) 0 0.50 

Total (kg N2O-N per ha) 0.52 0.01 8.2 

Carbon dioxide emissions due to liming and burning of diesel fuel had large variation among farms, which 257 
depended on the quantities of lime and diesel fuel used (Table 6).  258 

Table 6 259 
Annual carbon dioxide emission (CO2) from the farm production  260 

  Dual purpose cattle farms (n = 1313) 
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CO2 emissions Mean Min Max 

Directly    

Liming, kg CO2 per ha 4 (56%) 0.0 260 

Diesel fuel, kg CO2 per ha 3.2 (44%) 0.03 53.5 

Total (kg CO2 per ha) 7.2 (100%) 0.00 260.0 

3.3 Allocation of environmental burdens between meat (LWG) and milk (FPCM) 261 

Economic, energy, and mass methods were used to assign the environmental burdens between milk and live 262 
weight gain and to identify variations. When using these allocation methods, the proportion of 263 
environmental burdens allocated to meat differed, with the economic method assigning the greater burden, 264 
followed by energy content (Table 7). When applying mass allocation, emissions per kg LWG were lowest and 265 
emissions per kg FPCM were highest. Rice et al. (2017) found a similar trend as ours for the proportion of 266 
GHG allocated to meat depending on the allocation method used, increasing from the mass, to the energy, 267 
and to the economic allocation method. 268 

Table 7  269 
Effect on emission per kg products with different allocation methods of greenhouse gas emission between meat and 270 
milk  271 

  Dual-purpose cattle farms (n = 1313) 

  Mean Min Max 

Meat CO2-eq, % of total 
Economica 36 4 84 
Energyb 30 3 79 
Mass 13 1 55 

Emission after allocation (meat), kg CO2-eq per kg LWG 
Economic 12.8 4.5 36.6 
Energy 10.5 3.5 32.8 
Mass 4.4 1.2 18.2 

Emission after allocation (milk), kg CO2-eq per kg FPCM 
Economic 2.9 1 8.4 
Energy 3.3 1 10.2 
Mass 4.3 1 18.2 

a 1 kg FPCM = 1000 COP; 1 kg live weight gain = 4364 COP 
b Energy value of milk = 2.9 MJ kg-1; energy value of carcass meat = 9.25 MJ kg-1 

As recommended by Rice et al. (2017) when selecting an allocation method, the quality and reliability of data 272 
should be the most important factor. Consequently, in the multivariate analysis we decided to include results 273 
of the environmental performance of farms after economic allocation, which is associated to the fact that 274 
the ratio of milk and meat prices has been steady in Colombia (FEDEGAN, 2017).  275 

In Latin America, an LCA study for DPS in Nicaragua allocated the total environmental burden to milk (Gaitán 276 
et al., 2016). Similarly, an LCA dairy study in Brazil did not consider allocation approaches (de Léis et al., 2015). 277 
An LCA study for dairy systems in Peru (Bartl et al., 2011) and the evaluation of cow-calf stage in an LCA for 278 
beef production in Mexico (Rivera-Huerta et al., 2016), found identical proportions as our economic approach 279 
after applying the economic allocation method. In addition, an LCA study in Costa Rica that included DPS, 280 
applied an expanded boundary LCA of coupled dairy and beef production to avoid the allocation of 281 
environmental burdens (Mazzetto et al., 2020). As there is no consensus among LCA studies regarding which 282 
allocation method to apply, the estimation of impacts per product cannot be established precisely, and 283 
variations in results can exist. A common framework for allocation would allow, for future LCA evaluations, 284 
the partitioning of environmental burdens amongst co-products on a consistent basis, and consequently, 285 



12 
 

identify hotspots and behaviors per product, and compare results between studies. This would also facilitate 286 
the establishment of policies aimed at supporting mitigation and adaptation actions for the cattle sector.  287 

3.4 Contribution of on-farm and off-farm processes to total greenhouse gas emissions (GHG) by cluster 288 

In all the clusters most of the GHG emissions arose from on-farm activities related to enteric fermentation 289 
and manure deposited on pasture (Figure 2). Fertilization, and excreta management were limited, therefore 290 
the contribution of N2O to on-farm emissions was much lower than CH4 from enteric fermentation. On-farm 291 
carbon dioxide emissions were low due to the little use of machinery and liming. The ranking of off-farm 292 
emissions was mostly influenced by the amount of purchased feed, followed by agrochemical inputs and 293 
transport. A similar structure of GHG emissions distribution was also reported for DPS in Nicaragua and Costa 294 
Rica, which were low input dependent and based the feeding strategy adopted in sown and naturalized 295 
pastures (Gaitán et al., 2016; Mazzetto et al., 2020). Our results have a similar trend in the distribution of 296 
GHG emission of cattle milk and meat for the Latin American countries reported by Gerber et al. (2013), with 297 
methane being the main source of emissions. Gerber et al. (2013) assigned around 50% of total emissions to 298 
enteric fermentation (without counting emissions from land-use change), however, these figures are lower 299 
than our findings where this source of emissions accounted for more than 70% of total emissions. The above 300 
is mainly related to the fact that studied farms were low input farms and most emissions were from the 301 
animals. When farms intensify their production, GHG emissions arising from animals reduce, while those 302 
from excreta management and inputs production and  use increase (Rotz, 2018). 303 

  304 
Figure 2. Contributions of different on – farm and off – farm processes to total greenhouse gas emissions 305 

from dual – purpose farms at the farm gate located in 13 departments of Colombia (n=1313) 306 
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3.5 Variation among farms and interpretation of clusters 307 

The large number of farms assessed (n=1313) provides a potential to identify relationships among 308 
environmental performance and farming practices, allowing for the proposal of strategies to increase 309 
productivity and mitigate GHG emissions.  310 

According to the bi-plot resulting from the PCA (Figure 3), milk yield (kg FPCM cow-1 year-1; kg FPCM ha-1 311 
year1) and meat production per hectare were positively correlated to the stocking rate (AU ha-1), as they were 312 
located in the same area of the graph. These variables were negatively correlated to emission (per kg FPCM 313 
and per kg LWG) and LU (per kg FPCM and per kg LWG). This means that increased milk per cow and ha, and 314 
meat per ha leads to reduced CF and LU per kilogram FPCM and per kilogram LWG. The analysis also showed 315 
a positive correlation among percentages of area of improved pastures, fertilizers application rate, forage 316 
production per ha, and non-renewable energy use (per kg FPCM and per kg LWG). Farms with high 317 
percentages of improved pastures used more synthetic fertilizers, which explains the positive correlation 318 
with non-renewable energy use. 319 

 320 
Figure 3. Bi-plot for the principal component analysis (PCA) with information collected from 1313 DPS of 321 
Colombia  322 

After cluster analysis, four groups of farms were identified (Table 8). Average milk production for all farms 323 
are similar to the lower values of the production ranges reported for DPS in Latin America (Gaitán et al., 2016; 324 
Rojo-Rubio et al., 2009). However, results of cluster 1 and 3 are comparable with average values reported for 325 
DPS in Colombia, while clusters 2 and 4 presented lower yields. Farms of all groups base their feeding strategy 326 
on grazing on sown pastures all year round, with feed purchased (% of DM) being lower than 4% of DM in all 327 
clusters, a typical characteristic of extensive cattle systems in Latin America (Rao et al., 2015). 328 

Table 8.  329 
Means for selected farm variables for four farm clusters of 1313 dual-purpose cattle farms in Colombia 330 

  
Cluster 1, 
n = 261   

Cluster 2, 
n=220  

Cluster 3, 
n = 603  

Cluster 4, 
n = 229   

  Mean   Mean   Mean   Mean   
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Stocking rate, AU ha-1 2.8 a 1.0 b 1.1 b 1.1 b 
Milk production, kg FPCM ha-1 
year-1 

3021.8 a 735.1 c 1000.5 b 522.7 c 

Milk production, kg FPCM cow-1 
year-1 

1510.1 a 1208.7 b 1416.4 a 930.9 c 

Meat production, kg LWG AU-1 
year-1 

87 bc 96.0 b 107.4 a 80.4 c 

Meat production, kg LWG ha-1 year-

1 
357.3 a 101.2 b 130.9 c 111.4 b 

Area of improved pastures, % 32 b 72 a 5 c 6 c 
Fertilizer application rate, kg ha-1 

year-1 
76.9 b 185.5 a 25.6 c 25.9 c 

Feed purchased, % of DMI 3.8 a 3.6 ab 3.2 b 2.6 c 
Dry matter production, Ton ha-1 
year-1 

10.8 b 13.3 a 8.6 c 8.6 c 

Diesel consumption, L ha-1 year-1 2.2 a 1.4 b 0.9 c 1.8 d 
Carbon footprint, CO2-eq kgFPCM-1  2.1 d 3.1 b 2.4 c 4.2 a 
Carbon footprint, CO2-eq kgLWG-1  9.0 d 13.6 b 10.5 c 18.3 a 
Non-renewable energy use, MJ 
kgFPCM-1 

1.0 c 3.8 a 0.9 d 1.4 b 

Non-renewable energy use, MJ 
kgLWG-1 

4.6 c 16.6 a 3.8 d 6.0 b 

Land Use, m2 kgFPCM-1 3.0 c 13.7 a 10.2 b 25.2 a 

Land Use, m2 kg LWG-1 12.5 c 59.0 a 44.5 b 108.6 a 

Variable means with different letters across rows are significantly different at P < 0.05 

Cluster 1 (261 farms) had the highest milk yield, meat production (per ha), stocking rate and diesel fuel 331 
consumption. This cluster presented the second largest application rate of fertilizers, area of improved 332 
pastures, and dry matter production. This led to the lowest results for GWP and land use among clusters, and 333 
the second lower results for non-renewable energy use due to high diesel fuel consumption.  334 

Cluster 2 (220 farms) had the highest area of improved pastures and application rate of fertilizers. These 335 
farms had the highest dry matter production and the lowest stocking rate, which points to an inefficient use 336 
of the pasture. In addition, the production parameters were also low. Due to these characteristics, this cluster 337 
presented the highest non-renewable energy use and the second highest values for GWP and LU. 338 

Cluster 3 consisted of 603 farms, had the highest LWG (per AU), the second highest milk yield (per cow and 339 
per hectare), meat production per ha, and stocking rate, and the lowest consumption of diesel among groups. 340 
Additionally, the area of improved pastures, fertilizer application rates, and dry matter production were the 341 
lowest amongst clusters. These characteristics led to the lowest non-renewable energy use and the second 342 
lowest value for GWP and LU. Despite the lower implementation of improved pastures and forage production 343 
among clusters, these farms had high milk and LWG production. 344 

Cluster 4 included 229 farms, had the lowest milk yield, LGW production (per AU), area of improved pastures, 345 
application rate of fertilizer and stocking rate. The low productive performance of these farms led to the 346 
highest GWP and LU, and the second highest non-renewable energy use among groups. 347 

3.6 Environmental impacts and comparisons with other studies 348 

The CF results were negatively correlated with milk production. This result, in terms of CO2-eq per kg FPCM, 349 
is in agreement with the findings of Gaitán et al. (2016) for DP farms in Nicaragua. This means that a general 350 
increase in productivity, per animal and per hectare, might reduce CF, as was also suggested by de Léis et al. 351 
(2015) for dairy production systems in Brazil. Results for Cluster 1 are similar to those reported for intensive 352 
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silvopastoral systems in Colombia (Rivera et al., 2016), and slightly higher than those for climate smart farms 353 
in Nicaragua (Gaitán et al., 2016). In addition, results for Cluster 3 are comparable to the level estimated by 354 
Rivera et al. (2016) and Gaitán et al. (2016) for conventional systems, while values for Clusters 2 and 4 are 355 
higher than those reported in these studies. Due to the lower milk yield and stocking rate, our results are 356 
higher than CFs informed for specialized dairy farms in developed countries (Ross et al., 2017; Sejian et al., 357 
2018; Styles et al., 2018). 358 

In Latin-America, CF from beef systems range from 9 to 43 kg CO2-eq per kg LWG (Dick et al., 2015; Modernel 359 
et al., 2018; Ruviaro et al., 2015). Our results are at the lower end of this range and are also similar to CF 360 
informed for specialized beef production systems (Alemu et al., 2017; Mogensen et al., 2015). Emissions for 361 
Clusters 1 and 3 are comparable with those reported for more intensive systems, while results for Clusters 2 362 
and 4 are closer to those of extensive systems. The relatively lower values found in this study are probably a 363 
consequence of the allocation of emissions between co-products, with a lower proportion assigned to meat, 364 
while in pure beef systems all GHG emissions are allocated to meat. This suggests that meat produced 365 
through DPS could be more environmentally friendly than meat produced in purely beef systems. The 366 
existence of a system where beef can be supplied from dairy farms while maintaining productivity within the 367 
dairy industry has been proposed as a good option to reduce GHG emissions from beef production in Ireland 368 
(Casey and Holden, 2006). Thus, well managed dual-purpose farms could attain higher meat production, 369 
replacing a greater percentage of meat from exclusively beef systems and thus reduce environmental 370 
burdens from the cattle sector. This could be an effective strategy to accomplish the national goals of GHG 371 
emissions reduction. 372 

The process which had the most energy use was fertilizer production off-farm. Cluster 2, which relies more 373 
on external inputs, showed the highest demand for non-renewable energy. Despite Cluster 1 having the 374 
second-largest fertilizer application rate, its high milk and meat yields reduced the impact of non-renewable 375 
energy use. Cluster 3 had the lowest non-renewable energy use per kg milk and meat of all the four clusters. 376 
This trend was also reported in dairy systems in Colombia, where a conventional system had higher non-377 
renewable energy used than a silvopastoral system, mainly due to its higher used of external inputs (Rivera 378 
et al., 2016). Results for clusters 1, 3 and 4 are lower than those reported by Zucali et al. (2017), Battini et al. 379 
(2016), and Modernel et al. (2013), however, results for Cluster 2 are similar. 380 

The grazing area was identified as the most important contributor to land use, with more than 98% in each 381 
cluster. Similarly, Dick et al. (2015) reported that grassland occupied large areas (~100% of the farm area) on 382 
farms based on extensive and improved beef systems in Brazil, and Rivera et al. (2016) found that 92% of 383 
land use in intensive silvopastoral dairy systems in Colombia was left to pasture cultivation. Increasing 384 
stocking rate while maintaining the availability and quality of forage, could be an effective strategy not only 385 
to reduce land use but also GHG emissions. 386 

3.7 Improvement options and implications 387 

Clusters 1 and 3 had higher milk productivity (per cow and per hectare) and meat production per ha than 388 
clusters 2 and 4. This can be due to better herd reproductive practices (González-Quintero et al., 2020), which 389 
have been reported as strategies that allow the increasing of herd productivity in Latin American cattle 390 
systems (Holmann et al., 2003). In turn, clusters 1 and 2 were characterized by higher dry matter per ha of 391 
pasture and a larger proportion of improved pastures. This might be due to better pasture renewal practices 392 
than the other 2 clusters. These practices are associated with mechanization, fertilization, weed control, 393 
planting grass, rotational grazing, and electric fences (González-Quintero et al., 2020).  394 

Two production strategies can be identified among dual-purpose farms. The first, depicted in Clusters 1 and 395 
2, is basing the feeding strategy on a combination of improved and natural pastures, combined with the 396 
highest fertilizer application rates. The second is found in farms of Clusters 3 and 4, where the feeding 397 
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strategy is based on grazing natural pastures, with low input of fertilizers. However, there was a significant 398 
difference in terms of productivity of milk and meat (per ha) between clusters from each way of production 399 
strategy. This led to a lower GHG emissions in Clusters 1 and 3 compared to Clusters 2 and 4. 400 

The above analysis provides insight into possible technological changes and management options that can 401 
increase the productivity parameters and improve the environmental performance of DPS. In order to move 402 
from Cluster 2 to Cluster 1, livestock managers should improve pasture management and increase stocking 403 
rate. Similarly, to change from Cluster 4 to Cluster 3, farmers should adopt the good agricultural practices 404 
developed by farms from Cluster 3 which corresponded to rotational grazing, reproduction practices such as 405 
artificial insemination, controlled natural mating and reproductive control on cows, and record-keeping to 406 
better control farm activities. With these changes, it would be possible to reduce GHG emissions without 407 
vast investments. 408 

For the right establishment of policies aimed at supporting mitigation and adaptation actions for the cattle 409 
sector in Colombia, it is important to know the relative cost-effectiveness for the implementation of 410 
improved pastures as a mitigation measure. Results for the first year, after the implementation of improved 411 
pastures, showed positive cost-effectiveness for clusters 1, 2 and 4, while the result for Cluster 3 was negative 412 
(Table 9). However, for the following years after the implementation, the cost-effectiveness for all clusters 413 
was negative. The above suggests that cost savings can be achieved by adopting improved pastures, while 414 
reducing GHG emissions. Additionally, it is important to note that in the first year GHG emissions reductions 415 
were achieved for all clusters. Similar cost-effectiveness values were obtained in a study conducted in Brazil, 416 
where the implementation of improved pastures for land restoration reached negative cost-effectiveness (de 417 
Oliveira Silva et al., 2015).  418 

Table 9. 419 
Marginal cost effectiveness, emissions reductions, and environmental performance of clusters after improved pastures 420 
establishment 421 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 

  Mean Mean Mean Mean 

Marginal cost-effectiveness first year (establishment), 
US$ (t CO2e)-1 yr-1 

0.09 0.05 -0.05 0.03 

Marginal cost-effectiveness following years 
(maintenance), US$ (t CO2eq)-1 yr-1 

-0.11 -0.06 -0.19 -0.13 

Carbon footprint (% variation with baseline), CO2-eq 
kgFPCM-1  

1.6 (-25%) 2.0 (-37%) 1.6 (-34%) 2.2 (-48%) 

Carbon footprint (% variation with baseline), CO2-eq 
kgLWG-1  

6.8 (-25%) 5.0 (-37%) 6.9 (-34%) 9.5 (-48%) 

Reductions in total GHG emissions led to a lower CF in all clusters in comparison to the baseline (Table 9). 422 
Cluster 2 reached similar values as Cluster 1, and Cluster 4 obtain even lower values than Cluster 3, due to an 423 
increased quality and yield of grasslands. By increasing the pasture productivity, less area is required to meet 424 
the same demand of the baseline, which means forage availability optimally fulfill cattle nutritional 425 
requirements. These new CFs figures, especially for clusters 1 and 2, are close to values reported for 426 
specialized dairy systems in Latin America and developed countries (Bava et al., 2014; Dalgaard et al., 2014; 427 
de Léis et al., 2015; Salvador et al., 2017), which points out the possibility of DPS to achieve better 428 
environmental performance with negative cost-effectiveness. 429 

Around 69.2% of the studied farms had less than 50 animals, which agrees with the percentage distribution 430 
of livestock farms in Colombia where 82% have less than 50 heads of cattle and are considered to be small 431 
ranchers (González-Quintero et al., 2020; ICA, 2019). In addition, DPS in Colombia are known to have  low 432 
adoption of technology, low productive parameters and low profitability (González-Quintero et al., 2020). 433 
Studied farms were pastured based systems and rely mostly on the use of natural pastures and a lesser extent 434 
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on improved ones. Because of the low farm profitability and socio-economic status of DPS, economic 435 
investment is a barrier to the adoption of improved pastures. Most of the Latin American countries, except 436 
for Brazil and Argentina, do not have policies or governmental programs for mitigation and adaptation to 437 
climate change focusing on the agricultural sector (González-Quintero et al., 2015). Therefore, it is necessary 438 
to provide incentives for the adoption of improved pastures such as increased availability and accessibility of 439 
seeds, inputs, and subsidies for labor, tax exemptions, financing technical assistance, payment for 440 
environmental services (PSE), and soft loans (Murgueitio, 2009). These incentives, which include public policy 441 
instruments, are important for achieving the implementation of these kinds of measures on a larger scale, 442 
allowing producers to have access to projects that foster measures for increasing cattle productivity and 443 
increasing environmental benefits. 444 

4 Conclusions 445 

The largest source of GHG emissions in dual-purpose systems in Colombia arises from cattle herds, where 446 
methane from enteric fermentation and N2O from excretions deposited on pastures are the main 447 
contributors to GHG emissions. Therefore, the carbon footprint of products leaving the farm will be sensitive 448 
to the amount of enteric methane and nitrous oxide from pastures in relation to the amount of milk and 449 
meat produced.  450 

The current study identified two production strategies, a more intensive strategy with high proportion of 451 
improved pasture and higher fertilizer application rates and a more extensive strategy with low input of 452 
fertilizers and grazing on natural pastures. Both strategies had a cluster of better farms (Cluster 1 and Cluster 453 
3) that provided low carbon footprint values which were in the same range and a cluster of farms that had 454 
higher carbon footprint values (Cluster 2 and Cluster 4). Within both strategies, the two groups of farms had 455 
either low or high milk yield per cow and productivity (milk and meat) per ha. This suggests that both 456 
extensive and more intensive strategies for the dual-purpose cattle systems can lead to lower carbon 457 
footprint values and provide promising mitigation options. The balance between the inputs used and the on-458 
farm emissions in relation to the milk and meat produced is the main determinant for the outcome of the 459 
carbon footprint and improvements that optimizes the effective use of resources will reduce the carbon 460 
footprint.  461 

Despite the differences in management practices between both production strategies, our results suggest 462 
that the identification of an adequate fertilizer application rate and the implementation of better agricultural 463 
management practices, such as improved pastures had the potential to increase both the quality and amount 464 
of animal feed and reduce the carbon footprint. Therefore, these farming strategies are promising mitigation 465 
measures for reducing GHG emissions per kg of milk and meat at the farm gate after allocation, for dual-466 
purpose cattle systems in Colombia. In addition, the mitigation practices showed a negative cost-467 
effectiveness after the implementation period.  468 

This study contributes to a better understanding of the environmental impacts of intensive and extensive 469 
dual-purpose systems in Colombia. By highlighting a cost-effective mitigation option, this paper provides an 470 
insight into the sustainable intensification process for the Colombian dual-purpose cattle systems. 471 
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