439 research outputs found

    Incorporating BCNU wafers into malignant glioma treatment: European case studies

    Get PDF
    International audienc

    Very high rotational frequencies and band termination in 73Br

    Get PDF
    Rotational bands in 73Br have been investigated up to spins of 65/2 using the EUROBALL III spectrometer. One of the negative-parity bands displays the highest rotational frequency 1.85 MeV reported to date in nuclei with mass number greater than 25. At high frequencies, the experimental dynamic moment of inertia for all bands decrease to very low values, indicating a loss of collectivity. The bands are described in the configuration-dependent cranked Nilsson-Strutinsky model. The calculations indicate that one of the negative-parity bands is observed up to its terminating single-particle state at spin 63/2. This result establishes the first band termination case in the A = 70 mass region.Comment: 6 pages, 6 figures, submitted to Phys. Rev. C as a Rapid Communicatio

    Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight

    Get PDF
    Many species travel in highly organized groups. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals in the assemblage. The distinctive V formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention. The well-held belief is that such aggregations give an energetic benefit for those birds that are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird4,7,9,10,11, although a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals of northern bald ibises (Geronticus eremita) flying in a V flock position themselves in aerodynamically optimum positions, in that they agree with theoretical aerodynamic predictions. Furthermore, we demonstrate that birds show wingtip path coherence when flying in V positions, flapping spatially in phase and thus enabling upwash capture to be maximized throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird—in a streamwise position—there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that would be required to perform such a feat. We conclude that the intricate mechanisms involved in V formation flight indicate awareness of the spatial wake structures of nearby flock-mates, and remarkable ability either to sense or predict it. We suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings

    Predictable and robust performance of a Bi-2223 superconducting coil for compact isochronous cyclotrons

    Get PDF
    The development of ever smaller medical particle accelerators is motivated by a desire to make proton therapy accessible to more patients. Reducing the footprint of particle accelerators and subsequently proton therapy facilities allows for cheaper and broader usage of proton therapy. By employing superconducting technologies for field shaping, the size of particle accelerators can be reduced further below what is possible with saturated iron. This article discusses experiments on a first-of-its-kind double pancake (DP), and an assembly of six DP coils, designed to be used as a so-called ‘flutter coil’ for a compact isochronous cyclotron for proton therapy, fabricated from high-temperature superconducting (HTS) Bi 2 − x Pbx Sr2Ca2Cu3Oy (Bi-2223) tape. The coils were mounted under pre-stress within a stainless-steel structure to maintain mechanical stability during the experiments. The critical current as a function of the temperature of both coils was measured in a conduction-cooled setup. A model describing the coils, based on tape data, was created and revealed that the measurements were in excellent agreement with the predictions. Additional experiments were performed to study the quench and thermal runaway behaviour of the HTS coils, determining whether such coils can be protected against fault scenarios, using realistic quench-detection levels and discharge extraction-rates. These experiments demonstrate that the coils are very robust and can be well protected against quenches and thermal-runaway events using common quench-protection measures with realistic parameters.</p

    Rats Selectively Bred for High Voluntary Physical Activity Behavior are Not Protected from the Deleterious Metabolic Effects of a Western Diet When Sedentary

    Get PDF
    Background: Physical activity and diet are well-established modifiable factors that influence chronic disease risk. We developed a selectively bred, polygenic model for high and low voluntary running (HVR and LVR, respectively) distances. After 8 generations, large differences in running distance were noted. Despite these inherent behavioral differences in physical activity levels, it is unknown whether HVR rats would be inherently protected from diet-induced metabolic dysfunction. Objectives: The aim of this study was to determine whether HVR rats without voluntary running wheels would be inherently protected from diet-induced metabolic dysfunction. Methods: Young HVR, LVR, and a wild-type (WT) control group were housed with no running wheel access and fed either a normal diet (ND) or a high-sugar/fat Western diet (WD) for 8 wk. Body weight, percentage body fat (by dual-energy X-ray absorptiometry scan), blood lipids [total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides (TGs), nonesterified fatty acids], and hepatic TG content were measured, and indices of insulin sensitivity were determined via an intravenous glucose tolerance test. Additionally, weekly energy intake and feed efficiency were calculated. Results: After 8 wk, significant differences in body weight and body fat percentage were noted in all WD animals compared with ND animals, with the LVR-WD exhibiting the greatest increase due, in part, to their enhanced feed efficiency. Lipid dysregulation was present in all WD rat lines compared with ND counterparts. Furthermore, LVR-WD rats had higher total cholesterol, HDL cholesterol, and TG concentrations, and higher areas under the curve (AUC) for insulin than HVR-WD and WT-WD, although HVR-WD animals had higher AUCglucose than both LVR-WD and WT-WD and higher LDL than WT-WD. Conclusions: In the absence of high voluntary running behavior, the genetic predisposition for high running in HVR did not largely protect them from the deleterious effects of a WD compared with LVR, suggesting genetic factors influencing physical activity levels may, in part, be independent from genes influencing metabolism

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
    • …
    corecore