Upwash exploitation and downwash avoidance by flap phasing in ibis formation flight

Steven J. Portugal ${ }^{1}$, Tatjana Y. Hubel ${ }^{1}$, Johannes Fritz ${ }^{2}$, Stefanie Heese ${ }^{2}$, Daniela Trobe ${ }^{2}$, Bernhard Voelkl ${ }^{2,3 \dagger}$, Stephen Hailes ${ }^{1,4}$, Alan M. Wilson ${ }^{1}$ and James R. Usherwood ${ }^{1}$
${ }^{1}$ Structure \& Motion Laboratory, The Royal Veterinary College, University of London, Hatfield, Herts, AL9 7TA, UK, ${ }^{2}$ Waldrappteam, Schulgasse 28, 6162 Mutters, Austria, ${ }^{3}$ Institute for Theoretical Biology, Humboldt University at Berlin, Invalidenstrasse 43, 10115, Berlin, Germany, ${ }^{4}$ Department of Computer Science, University College of London, Gower Street, London, WC1E 6BT, UK.
${ }^{\dagger}$ Current address; ${ }^{3}$ Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK Many species travel in highly organised groups ${ }^{1-3}$. The most quoted function of these configurations is to reduce energy expenditure and enhance locomotor performance of individuals within the assemblage ${ }^{4-11}$. The distinctive \mathbf{V} formation of bird flocks has long intrigued researchers and continues to attract both scientific and popular attention ${ }^{4,7,9-14}$. The well held belief is that such aggregations give an energetic benefit for those birds which are flying behind and to one side of another bird through using the regions of upwash generated by the wings of the preceding bird ${ }^{4,7,9-11}$, though a definitive account of the aerodynamic implications of these formations has remained elusive. Here we show that individuals flying within a V flock position themselves in aerodynamically optimum positions, in so far as they agree with aerodynamic theoretical predictions. Furthermore, we demonstrate that birds exhibit wingtip-path coherence when flying in V positions, flapping spatially in phase enabling upwash capture to be maximised throughout the entire flap cycle. In contrast, when birds fly immediately behind another bird - in a streamwise position - there is no wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially reduce the adverse effects of downwash for the following bird. These aerodynamic accomplishments were previously not thought possible for birds because of the complex flight dynamics and sensory feedback that

would be required to perform such a feat ${ }^{12,14}$. We conclude that the intricate mechanisms involved in V formation flight indicate remarkable awareness of, and ability to either sense or predict, the spatial wake structures of nearby flock-mates; and suggest that birds in V formation have phasing strategies to cope with the dynamic wakes produced by flapping wings.

Fixed-wing aerodynamic theories have predicted the exact spanwise positioning that birds should adopt within a V formation flock to maximise upwash capture ${ }^{4,9-14}$. The primary empirical evidence to confirm that this mechanism is used is a reduction in heart rate and wingbeat frequency in pelicans flying in a V formation ${ }^{7}$. There is a general lack of experimental data from free-flying birds, mainly due to the complications of measuring the intricate and three-dimensional complexity of formation flight, and the lack of appropriate devices to monitor and record such information. Therefore, the precise aerodynamic interactions which birds employ to exploit upwash capture have not been identified. To investigate the purported aerodynamic interactions of V formation flight, we studied a free-flying flock of critically endangered Northern bald ibises (Geronticus eremita) (Fig. 1a). We used novel technology ${ }^{15,16}$ to measure the position, speed and heading of all birds within a V formation. We recorded position and every wing flap of 14 birds during 43 minutes of migratory flight using backmounted integrated Global Positioning System (5 Hz) (GPS) and inertial measurement units $(300 \mathrm{~Hz})($ IMUs $)$ (see Full Online Methods) ${ }^{15,16}$. The precision of these measurements allows the relative positioning of individuals within a V to be tracked, and the potential aerodynamic interactions to be investigated at a level and complexity not previously feasible.

During a 7 minute section of the flight, where the majority of the flock flew in approximate V formation in steady, level and planar direct flight, (see Full Online Methods), we found wing flaps occurred at an angle of, on average, 45 degrees to the bird ahead (or behind), and approximately 1.2 m behind (Fig. $1 b, c, d$). The most populated 1 m by 1 m region was 0.49 m to 1.49 m behind ("streamwise") and to the side of the bird ahead. The centre of the most
populated $(0.25 \mathrm{~m})$ spanwise region was at 0.904 m , resulting in a wingtip overlap ${ }^{9-13}$ of 0.115 m (Fig. $1 c, d$, wingspan $b=1.2 \mathrm{~m}$). This falls within the bounds of fixed-wing theory predictions ${ }^{9-13}$ for maximising the benefits from upwash, which range from zero wingtip overlap (assuming no wake contraction ${ }^{4}$) to, maximally, 0.13 m (assuming elliptical loading over the pair of wings, and full wake contraction from wingspan b to $\pi b / 4)^{9}$.

During this 7 minute section of V formation flight, individual birds show a certain degree of positional infidelity within the V flock (Fig. 2, see also Supplementary Figure 1 and Supplementary Video 1). While individuals contribute to the statistical V formation, their positioning is inconsistent. Certain individuals showed general preferences for a particular area within the V formation, but the variability in positioning within the flock resulted in no clear leader (see Supplementary Information for further discussion).

While we observe that, when flying in a V, ibises position themselves in fixed-wing mathematically predicted positions ${ }^{4,9-11}$, the wake of flapping birds (in this study, ibises spent 97% of their time flapping; Full Online Methods) is likely to be complex ${ }^{9-14}$. Wingtip path coherence, where a flying object flaps its wings in spatial phase with that of the individual it is following, has been proposed as a method that would maximise upwash capture in V formation flight of birds and flying robotic devices ${ }^{12}$. Whether birds are able to take advantage of this additional level of complexity present in flapping flight (in comparison to that of fixed-wing flight) had previously remained unanswered.

Within the ibis flock, individual flaps for each bird were described from the dorsal acceleration signal from the IMU^{15}. The temporal phase $\phi_{\text {temporal }}$ is defined here as the proportion of a flap cycle of a leading bird at which a following bird initiates a flap. Spatial phase $\phi_{\text {spatial }}$ makes use of the temporal phases, and takes account of the number of wavelengths, λ, between the bird ahead and the bird behind:

$$
\phi_{\text {spatial }}=\phi_{\text {temporal }}-2 \pi \lambda
$$

A spatial phase of zero would indicate that, were the birds to be directly following each other, the wingtip paths would match.

In the most populated 1 m by 1 m favoured V position (Fig. 1c), Rayleigh's test ${ }^{17}$ for circular statistics indicates a significant unimodal bias in both temporal (Rayleigh, $P=0.018$, mean phase $=0.857$; Hodges-Ajne, $P=0.012$) and, more strongly, spatial (Rayleigh, $P=0.003$, mean phase $=-1.155$; Hodges-Ajne, $P=0.004$) phases (Fig. 3a, b) (see Supplementary Table 1 for further statistics; Supplementary Figure $2 a, 3 a, 4 a)$. Flapping in spatial phase indicates that the wing of a following bird goes up and down following the path through the air previously described by the bird ahead. The following bird then benefits from consistently flapping into the upwash region from the preceding bird (Fig. 3b, c), presumably reducing the power requirements for weight support ${ }^{12,14}$

In contrast, birds flying directly behind, tracking the bird ahead in a streamwise position (sampled region 0.5 m across, 4 m streamwise, Fig. 1c) flap in close to spatial antiphase (median $=2.897$, where precise antiphase would be $+/-3.142$), significantly $(P<0.05)$ deviating from flapping 'in' spatial phase (see Supplementary Table 1 for further statistics; Supplementary Figure $2 b, 3 b, 4 b$). As such, the wingtip paths of the following bird do not match those of the bird they are following, and the wingtip paths are close to maximally separated. Birds flying directly behind another bird in a streamwise location flap in spatial antiphase (Fig. 3d, e, see also Supplementary Figure $2 b, 3 b$), potentially reducing the adverse effects of downwash (Fig. 3f), both in terms of magnitude and direction. If this position was aerodynamically adaptive, it would be predicted to be favoured at higher speeds, where parasite power is relatively high ${ }^{18}$, compared with the induced power costs of weight support; forms of slipstreaming can reduce the drag experienced by followers ${ }^{5,6,8,19}$, even in cases where there is zero net horizontal momentum flux in the wake (i.e. drag=thrust) - as in steady swimming due to temporal or local spatial ${ }^{5,20,21}$ fluctuations from mean wake conditions. Whether the
position immediately behind is accidental or intentional, and whether it offers any aerodynamic advantage or cost, is currently unclear. However, the wing-beat phasing observed when in this position would serve to displace the following bird's wings from regions of greatest downwash (presumably immediately inboard of the trailing wing tip vortices, close to wing tip paths described by the previous bird), through most of the flap cycle.

In transects both directly streamwise and in line favoured V position (Fig. 1c), temporal phase increases in proportion with distance behind the focal bird (Fig. 3a, d), with a full 2π cycle change in phase over a complete wavelength; spatial phase is approximately maintained up to 4 m behind the leading bird. Previously, there was much uncertainty about spatial wing-beat phasing and wingtip path coherence in flapping organisms. The only prior biological evidence of this phenomenon comes from tethered locusts, where distance manipulations between a leading locust and a follower altered the phase patterns of their wing-beats ${ }^{22,23}$. Physical models additionally support the potential for aerodynamic advantage due to phasing: appropriate timing between tandem flapping model dragonfly wings improves aerodynamic efficiency ${ }^{24}$. Theoretical engineering models have taken into consideration flapping flight, and the additional benefits a flapping wing may accrue in formation flight ${ }^{12,14}$. Such models have suggested that upwards of 20% variation exists in the induced power savings to be gained, if flapping is done optimally in spatial phase, versus out of phase ${ }^{12}$ (Supplementary Figure 4).

Here, we show that ibis flight in V formation does, on average, match fixed-wing aerodynamic predictions (Fig. 1c, d), but that flock structure is highly dynamic (Fig. 2). Further, temporal phasing of flapping relates to both streamwise and spanwise position. This indicates remarkable awareness of, and ability to respond to, the wingpath - and thereby the spatial wake structure - of nearby flock-mates. Birds flying in V formation flap with wingtip path coherence - the wingtips take the same path - placing wings close to the oscillating positions of maximal upwash. In contrast, birds flying in line flap in spatial antiphase - the wingtip paths are maximally separated - consistent with avoidance of adverse downwash. This raises the
possibility that, in contrast with conventional aircraft, following birds may be able to benefit from 'drafting' while, to a certain extent, avoiding an increased cost of weight support by evading localised regions of downwash. Optimal flight speeds would differ between solo flight, V formation flight and (whether net-beneficial or not) in-line flight, potentially providing some account for the unstable, dynamic nature of V formation flocks.

METHODS SUMMARY

Measurements: We equipped 14 juvenile Northern bald ibises with back-mounted synchronised GPS (5 Hz) and inertial measurement units (IMUs, 300 Hz), mass 23 g (Supplementary Photo 1), which are custom made within our laboratory, and have been tested and validated for accuracy and precision ${ }^{15,16}$. At the start of migration, the birds mass was 1.30 $\pm 0.73 \mathrm{~kg}$, the 23 g loggers comprising approximately 3% of the body mass of the smallest bird. This is below the recommended 5% for flying animals ${ }^{25}$. The ibises form part of a large-scale conservation programme and had been hand-reared at Salzburg Zoo (Austria), imprinted onto human foster parents, and taught to follow a powered parachute (paraplane) to learn the migration routes (Full Online Methods). Experiment protocols were approved by the RVC local Ethics and Welfare Committee. A GPS trace of the ibis flight imposed over Google Earth ${ }^{\text {TM }}$ (Landsat) can be found in Supplementary Photo 2 as a KML file. GPS data was post-processed using GravNav Waypoint ${ }^{\text {TM }}$ software ${ }^{15,26}$, and IMU data via custom-written MATLAB (R2012b, Mathworks, Natick, Mass., USA) programmes ${ }^{16,26}$. Mean flap frequency, speed and peak detection protocols are detailed in Supplementary Figures 5 and 6. For further details on post-processing, see Full Online Methods.

Statistical Analysis: Circular statistics ${ }^{17}$ were carried out in LabVIEW (NI, Austin, Texas, USA). First order (Rayleigh test) and second order (Hodges-Ajne) statistics were employed to test the phasing of wing-beats for significant deviations from random distribution. For further details on statistical analysis, see Full Online Methods.

Full Methods and any associated references are available in the online version of the paper at
www.nature.com/nature.

References

1. Couzin, I. D., Krause, J., Franks, N. R. \& Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513-516 (2004).
2. Nagy, M., Akos, Z., Biro, D. \& Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890-894 (2010).
3. May, R. M. Flight formations in geese and other birds. Nature 282, 778-780 (1979).
4. Lissaman, P. B. \& Schollenberger, C. A. Formation flight of birds. Science 168, 10031005 (1970).
5. Liao, J. C., Beal, D. N., Lauder, G. V. \& Triantafyllou, M. S. Fish exploiting vortices decrease muscle activity. Science. 302, 1566-1569 (2003).
6. Bill, R. G. \& Hernnkind, W. F. Drag reduction by formation movement in spiny lobsters. Science 193, 1146-1148 (1976).
7. Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P. \& Jiraskova, S. Energy saving in flight formation. Nature 413, 697-698 (2001).
8. Fish, F. E. Kinematics of ducklings swimming in formation: consequence of position. J. Exp. Zool. 273, 1-11 (1995).
9. Badgerow, J. P. \& Hainsworth, F. R. Energy savings through formation flight? A reexamination of the vee formation. J. Theor. Biol. 93, 41-52 (1981).
10. Cutts, C. J. \& Speakman, J. R. Energy savings in formation flight of pink-footed geese. J. Exp. Biol. 189, 251-261 (1994).
11. Hummel, D. Aerodynamic aspects of formation flight in birds. J. Theor. Biol. 104, 321347 (1983).
12. Willis, D. J., Peraire, J. \& Breuer, K. S. A computational investigation of bio-inspired formation flight and ground effect. In: Proceedings of the $25^{\text {th }}$ AIAA. Applied aerodynamic conferences, Miami, FL, AIAA-4281, Reston.
13. Hainsworth, F. R. Precision and dynamics of positioning by Canada geese flying in formation. J. Exp. Biol. 128, 445-462 (1987).
14. Maeng et al. A modelling approach to energy savings of flying Canada geese using computational fluid dynamics. J. Theor. Biol. 320, 76-85. (2013).
15. Usherwood, J. R., Stavrou, M., Lowe, J. C., Roskilly, K. \& Wilson, A. M. Flying in a flock comes at a cost in pigeons. Nature 474, 494-497 (2011).
16. Wilson, A. M. et al. Locomotion dynamics of hunting in wild cheetahs. Nature 498, 185-189. (2013).
17. Fisher, N. I. Statistical analysis of circular data. Cambridge University Press. (1993).
18. Pennycuick, C. J. Bird flight performance: a practical calculation manual. Oxford University Press. UK. (1989).
19. Spence, A. J., Thurman, A. S., Maher, M. J. \& Wilson, A. M. Speed, pacing and aerodynamic drafting in thoroughbred horse racing. Biol. Lett. 8, 678-681 (2012).
20. Chatard, J-C. \& Wilson, B. Drafting distance in swimming. Med. Sci. Sports Exerc. 35, 1176-1181. (2003).
21. Delextrat, A. et al. Drafting during swimming improves efficiency during subsequent cycling. Med. Sci. Sports Exerc. 35, 1612-1619. (2003).
22. Kutsch, W., Camhi, J. \& Sumbre, G. Close encounters among flying locusts produce wing-beat coupling. J. Comp. Physiol. A. 174, 643-649 (1994).
23. Camhi, J. M., Sumbre, G. \& Wendler, G. Wing-beat coupling between flying locusts pairs: preferred phase and life enhancement. J. Exp. Biol. 198, 1051-1063. (1995).
24. Usherwood, J. R. \& Lehmann, F. Phasing of dragonfly wings can improve efficiency by removing swirl. J. Roy. Soc. Interface 5, 1303-1307 (2008).
25. White et al. Implantation reduces the negative effects of bio-logging on birds. J. Exp. Biol. 216, 537-542. (2013).
26. King, A. J. et al. Selfish-herd behaviour of sheep under threat. Curr. Biol. 22, R561R562. (2012).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements The Waldrappteam assisted with data collection and provided logistical support (J.F., B.V.). We thank members of the Structure \& Motion Laboratory for discussions and assistance, particularly J. Lowe, K. Roskilly, A. Spence and S. Amos, and C. White and R. Bomphrey for reading an earlier draft of the paper. Funding was provided by an EPSRC grant to A.M.W., J.R.U. and S. Hailes (EP/H013016/1), a BBSRC grant to A.M.W. (BB/J018007/1), and a Wellcome Trust Fellowship (095061/Z/10/Z) to J.R.U.

Author contributions S.J.P., S. Hailes., A.M.W. and J.R.U. developed the concept of the paper. J.F., S.H. and D.T. reared and trained the birds. S.J.P., S.H., D.T., B.V. and J.F. collected the field data. S.J.P., T.Y.H. and J.R.U. undertook the data processing and analyses; J.R.U performed the circular statistics. S.J.P., T.Y.H, A.M.W. and J.R.U wrote the manuscript, with input from all authors.

Author Information: Reprints and permissions information is available at www.nature.com/reprints. Correspondence and requests should be addressed to S.J.P. (SPortugal@rvc.ac.uk). The authors declare no competing financial interests.

Figure Legends

Figure $1 \mathbf{V}$ formation flight in migrating ibises. a, Northern bald ibises (Geronticus eremita) flying in V formation during a human-led migratory flight (photo credit, M. Unsöld). b, 3D location histogram of the 7 minute flight section, showing position of individual ibis within the V formation, with respect to flock centroid, measured via a 5 Hz GPS data logger. The colour
scale refers to the duration (s) a bird was present in each 0.25 mx 0.25 m grid. A plot detailing the formation shape for the duration of the entire flight can be found in Supplementary Figure 7. \mathbf{c}, histogram of number of flaps (colour coded) recorded within each 0.25 mx 0.25 m region between all birds and all other birds. The majority of flaps occurred at an angle of approximately 45 degrees to the bird ahead (or behind). Transects denoted by dashed lines, directly behind or along the most populated V favoured position (just inboard of wingtip to wingtip), are the same as those detailed in Fig. 3. d, a histogram detailing the total number of flaps recorded between each bird-bird pair, with respect to position of the following bird. The shaded area (i-ii) denotes the limits of optimal relative positioning, based on fixed-wing aerodynamics.

Figure 2 Histograms demonstrating the positional infidelity for each Northern bald ibis within the \mathbf{V} formation during the migratory flight. The grey shaded V shape behind each individual histogram $(n=14)$ denotes the structure for all individuals within the flock (see Fig. 1b). The colour code refers to the duration (s) a bird was present in each 0.25 mx 0.25 m grid. While individual birds showed some bias towards the front, back, left or right regions of the V formation, these positions were not maintained rigidly.

Figure 3 Geometric and aerodynamic implications of observed spatial phase relationships for ibises flying in a V formation. Temporal phase increases as a function of position behind more advanced birds (median +/- 95\% CI of phase for each mean bird-bird interaction within a region). When positioned at close to a wavelength in line with the V favoured position (ac), wingtip paths approximately match: observed temporal phases agree with those predicted from the significant spatial phase relationship (thick black lines, $+/-95 \% \mathrm{CI}$) at the most populated $1 \mathrm{~m} \times 1 \mathrm{~m}$ region, using the mean wavelength measured for each position. When positioned directly in line (d-f), following birds flap in spatial antiphase, maximally separating wingtip paths. In this case the model line is derived from the median spatial phase for all birdbird interactions up to 4 m directly behind. Induced flow velocities (blue arrows, \mathbf{c}, f), due to
the trailing wingtip vortices of the bird ahead (vortex cores denoted by grey circles), are modelled as infinitely long, parallel vortex filaments. Birds flying in typical V formation keep their wings close to the region of maximal induced upwash (c) throughout the flap cycle. Birds flying directly behind flap in spatial antiphase, potentially reducing the adverse effects of downwash (f), both in terms of magnitude and direction. For scale, the downwash directly between the vortices would be (-) $0.3 \mathrm{~m} / \mathrm{s}$, between trailing vortices for a behind a bird of mass 1.3 kg , span 1.2 kg at a speed of $15 \mathrm{~m} / \mathrm{s}$ (no account is taken of flapping, viscosity or wake contraction). Alternative representations of (a) and (d) as Cartesian plots can be found in Supplementary Figure 3, and Supplementary Figure 4 details the extended data array displayed beyond the presented model line.

Birds. Northern bald ibises (Geronticus eremita) ($n=14$) were hatched at Salzburg Zoo in March 2011, and imprinted immediately onto human foster parents (S.H. and D.T.). At four months of age, the birds began training flights behind a powered parachute (paraplane). Training flights lasted between 1-4 hours, and were up to 5 km in length. At the end of July, birds were fitted with dummy loggers to prepare them for being equipped with data loggers for the long-distance migratory flights. The ibis flock comprised 5 females and 9 males. The mass of birds at the start of migration was $1.30 \pm 0.73 \mathrm{~kg}$. As such, the 23 g loggers comprised approximately 3% of the body mass of the smallest bird. This is comfortably below the recommended 5% for flying animals ${ }^{25,27}$. The loggers were externally attached, using Velcro ${ }^{\mathrm{TM}}$ and a harness (Supplementary Photo 1). The dummy loggers remained on when birds were at rest in the aviary, which was at all times bar the migratory flights. The first migratory flight began in August. The total migratory flight plan was from the training site near Salzburg ($47.75377 \mathrm{~N}, 13.052959 \mathrm{E}$), to Orbetello, Italy ($42.425484 \mathrm{~N}, 11.232662 \mathrm{E}$). Once en-route, birds were flown, on average, every $3^{\text {rd }}$ day. During flights, the birds followed the paraplane, but were typically to the side of the vehicle, on average 147 m laterally, consistently to the left, except for one turn (see Supplementary Fig. 5 and 6). All loggers functioned fully. The birds were flown early in the morning (6 am departure), due to later flight times increasing the occurrence of thermalling and gliding, resulting in the birds not following the paraplane sufficiently. A GPS trace of the full flight, imposed over Google Earth ${ }^{\mathrm{TM}}$ (Landsat), can be seen in Supplementary Photo 2 (as a KML file). The recorded flight was the $2^{\text {nd }}$ stage of the migration.

Data loggers. Further information pertaining to the loggers can be found in detail in Usherwood et al. ${ }^{15}$ and Wilson et al. ${ }^{16}$. Briefly, GPS was recorded at 5 Hz and data were postprocessed differentially over the short baseline between base station and ibises, using Waypoint $\operatorname{GrafNav}^{\text {TM }} 8.10$. L1 C/A code pseudo-range measurements were used to calculate the position of each GPS loggers, with velocity determined from L1 Doppler measurements. Using this
approach can provide positional accuracy to 0.3 m and speed accuracy better than $0.1 \mathrm{~m} / \mathrm{s}$. Accelerometer data were recorded at 300 Hz .

Initial data processing. The flight was checked for any periods when the birds had maintained periods of circling flight (note we do include one circle in our sequence) through examination of the GPS and accelerometer traces, and these sections were removed (less than 4 minutes of the total flight duration). The remaining flight, therefore, consisted of straight-line flight. The take-off and landing periods were removed, as, when taking off, it took approximately 4 minutes for the birds to form a coherent flock, and to follow the paraplane. Similarly, when the paraplane began to descend at the end of the flight, the birds separated and begin to glide during descent. The position of the paraplane was recorded and tracked via a data logger (see Supplementary Fig. 5 and 6). The GPS, recorded at 5 Hz , was interpolated (MATLAB, R2012b, Mathworks, Natick, Mass., USA) to the same sampling rate as the accelerometer data, at 300 Hz . The interpolation replaced missing values in the GPS. GPS and accelerometer data were passed through a $4^{\text {th }}$ order Butterworth filter (MATLAB). For the production of the histograms (Fig. 1b, c), the original GPS values were used after being interpolated to a constant 5 Hz sampling frequency. In Fig. $1 b$ and Fig. 2, the colour scale refers to the duration a bird was present in each 0.25 mx 0.25 m grid. For Fig. $1 c$, the colour scale refers to the number of flaps recorded in each grid. For Fig. 1c, the regional transect labelled 'directly behind' is offset because, for display and analysis purposes, all data from the left side is mirrored to the right so all data points are on one side, and so the centre of the first sampled region lies 0.125 m behind the lead bird. Dorsal acceleration was used to determine each wing flap, and the upper reversal point ${ }^{28}$ of the flap cycle (see Supplementary Fig. 5 and 6). Note that this reversal point in acceleration of the back need not relate to peak wing elevation - or indeed any particular wing kinematic - for the phasing analysis to function.

Height. Height was recorded. The precision of height measurements, however, is lower than for horizontal positions ${ }^{29}$. This is because there are no satellites below the birds, and this
geometry of the satellites causes a reduction in precision ${ }^{29}$. We do not consider vertical position due to the small 'signal' of interest (very slight vertical deflections) to the relatively high 'noise' (inevitable due to GPS satellite geometry). We chose a section where, according to the available error measurement calculated by Waypoint ${ }^{\mathrm{TM}}$ (see 'Data loggers'), the height values were relatively consistent and that during this flight portion, the birds were flying close to the same horizontal plane.

Calculating flock formation and individual positioning (Figure 1b, 2, Main Article). In order to establish positioning of individuals and structure within the flock, a flock centroid was determined. To calculate the centroid of the flock, the MATLAB function "centroid" was used. This function calculates the centroid of a polygon. The MATLAB centroid function treated each bird as a point of a polygon, and determined the centroid for each time point. An average speed was calculated and any birds with a speed discrepancy higher than $3 \mathrm{~m} / \mathrm{s}$ away from the mean flock speed were removed for that time point. From this, the resultant centroid was calculated now containing only birds close in position and speed. A rotation matrix was applied to the data to reorientate the heading so all birds were heading 'up', and the direction of the centroid is always on the positive ' Y ' direction. The resultant matrix comprised a position for each bird for each sampling point. Theta (Θ), the angle between each bird and the lead bird, was calculated, transforming Cartesian to polar coordinates (Cart 2 Pole, MATLAB). For data presentation in the histograms (Fig. 1b), the field of view being set to 15 m by 15 m , and the area was divided in a $60-$ by -60 grid of bins $(0.25 \mathrm{mx} 0.25 \mathrm{~m})$. Position $0 / 0$ is the centroid. The heat histograms are displayed as contour plots with 5 contour levels.

During the 7 minute section of V formation flight, individual birds show a certain degree of positional infidelity within the V flock (Fig. 2, see also Supplementary Figure 1 and Supplementary Video 1). While individuals contribute to the statistical V formation, their positioning is inconsistent. Certain individuals showed general preferences for a particular area within the V formation, whether left, right, front or rear, but the variability in positioning
resulted in no clear leader within the flock (Fig. 2). Navigational ability and kin selection have been proposed as major drivers of leadership in V formation flight ${ }^{30}$, with more experienced birds or parents of a family group taking the lead ${ }^{30}$. The ibis flock in the present study comprised birds of the same age (<1 year old), with no prior navigational experience of the route and no parent-offspring relationships. The absence of immediate kin selection and learnt navigational ability as possible factors determining a V formation structure in the recorded flight strengthens the evidence for an aerodynamic function behind the V formation observed in the ibis. The young age of the birds, however, may be the main factor as to why there is a lack of a clear leader in the ibis flock, contrasting with previous observations of adult ibises, in which consistent leaders in flocks were identified ${ }^{31}$. Spontaneous and inconsistent leadership has been identified in bird flocks either where no consistent social hierarchy exists ${ }^{32}$, or when no prior knowledge of a route is known ${ }^{33}$. For other 'classic' V formation fliers, the first migration is a significant cause of mortality for young birds, even when migrating with parents. As such, aerodynamic mechanisms that reduce the energetic cost of (albeit only very infrequent) migratory flight, may present considerable selection advantage.

Movement within flock (Supplementary Figure 1). Movement within the V formation was investigated by taking a 45 degree line, the preferred angle for positioning with the V (Fig. 1c) as a transect from the apex of the V . The apex was determined by the intersection of two 45^{0} lines, down each side of the V formation. For every bird for each time point, the distance was taken for how far it is positioned from the 45 degree perpendicular transect line. For simplicity of analysis, all data were flipped (mirrored) to all be plotted against one 45 degree line. For Supplementary Fig. 1 (a), the red circles represent the original positions of the birds, for all birds and all times. From this, the shortest distance to the 45 degree line was calculated (blue line) and the position was projected on the 45 degree line, and then the distance between projected position and green circle (the centroid) was calculated. The standard deviations (SD) are from the blue perpendicular line rather than the absolute distance, and represent how much
the position varies with respect to the line. A mean SD was then calculated for each perpendicular/parallel relationship (Supplementary Fig. 1, b,c). The positioning of all individuals varies more along the line than out from the line (Supplementary Fig. 1c). If the changes in position were due only to logger measurement error, the variation in perpendicular and parallel distance and position would be expected to be equal. Because most of the variation is present along the line, the variation can be confidently attributed predominantly to bird movement, not logger noise.

Circular statistics and phasing analysis. Circular statistics were applied using LabVIEW (NI, Austin, Texas, USA), following that of Fisher ${ }^{34-37}$. All height data were included for circular statistical analysis, but the data were not filtered. The filtered X and Y data were used, as detailed above. The X and Y positions were calculated with respect to the direction of travel.

The relative positions (in the direction of flight) and phase relationships (as a proportion of the flap cycle of each 'ahead' bird) was determined for every bird following every other bird. Determining appropriate independent sample criteria when considering phases is vital ${ }^{37}$, and presents a challenge when analyzing phase relationships. Consider the case of two birds flying at the same relative position and at the same frequency; they would maintain the same phase relationship indefinitely. Each flap would certainly not be considered an independent sample. As a conservative alternative, we take a mean phase for any bird-bird pairing for a given area to be an independent sample; no account is taken of the length of time or number of flaps spent within the area. Perversely, this technique actually makes use of the variability in relative position, and would be poor for absolutely rigid V formations.

Statistical tests ${ }^{34-37}$ were performed for two regions, combining left and right sides: one representing V formation flight, (from 0.49 m to 1.49 m both spanwise and streamwise), containing the highest density of flaps; the other for nose-to-tail, streamwise flight, covering a
volume 0.25 m spanwise from midline (so 0.5 m behind) and 4 m behind. This provided $n=165$ and $n=160$ bird-bird pairs for V formation and nose-to-tail regions respectively.

The Rayleigh test was applied to determine the presence of a single unimodal direction in phase without preconceptions of any mean direction. This found a significant departure from randomness - a significant unimodal bias - in phase (whether temporal or spatial) for the V formation region. Both Rayleigh's test (parametric) and Hodges-Ajne ${ }^{34-37}$ (a non-parametric test) on this region indicate that both the temporal phase and the spatial phase (taking into account the wavelength of whichever bird is ahead) are significantly different from those that would be found from a random distribution ${ }^{38,39}$.

The median phase for a given region - and its 95% confidence intervals - allows a specified alternative to be tested against. Fig. $3 a, d$ and Supplementary Fig. $3 a, b$ shows the median statistics in graphical form for the two regions. Zero or 'in' spatial phase falls outside the 95% confidence intervals for the nose-to-tail region.

The median spatial phases for the two regions described above were used to predict the temporal phases for 0.25 mx 0.25 m along two streamwise transects using the wavelength measured for each volume along the transect. If the median spatial phase was π - out of phase, as it is close to in the nose-to-tail transect - we would predict it to be π every integer number of wavelengths, and 0 or 'in' temporal phase at $1 / 2,3 / 2,5 / 2$ etc. wavelengths. The model - with bounding confidence intervals due the spatial median - is shown as lines in Fig. 3a,d. Measured median temporal phases ($+/-95 \%$ confidence intervals of the median) broadly match the predicted values (see also Supplementary Fig. 3a,b, which gives the same data in Cartesian form). While the fit between model and observed temporal phases is visually convincing, formal statistical treatment is avoided because of uncertainty over independence between neighbouring spatial regions along the transects.

Modelled induced flow behind flapping birds. The implications of flap phasing in terms of potential interaction with induced flows are shown in Fig. $3(c, f)$. For this model, it is assumed that the wingtip vortex left behind a bird ahead of a follower (the grey bird) follows the wingtip path through space - the convection of the vortex core (which, on average, will be inwards and downwards) is neglected ${ }^{40,41}$. Induced flow-fields are modelled following the Biot-Savart law ${ }^{42,43}$, treating the wingtip vortices as infinitely long, parallel filaments; no account is taken of variation in lift throughout the wingstroke cycle. Induced flows near the vortex cores are not modelled; these regions are represented by grey circles. That, while being correct given the reductions and assumptions described, should not be taken as accurate quantitative calculations of the local flowfield. However, the principles they demonstrate - the strongest region of upwash and downwash close outboard and inboard respectively of the wingtip path - meets basic aerodynamic expectations and recent modelling results ${ }^{42,43}$. For scale, the downwash directly between the vortices would be (-) $0.3 \mathrm{~m} / \mathrm{s}$, between trailing vortices for a behind a bird of mass 1.3 kg , span 1.2 kg at a speed of $15 \mathrm{~m} / \mathrm{s}$, (without modelling flapping or wake contraction).
27. Barron, D. G., Brawn, J. D. \& Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Method. Ecol. Evol. 1, 180-187 (2010).
28. Norberg, U. M. Vertebrate flight: mechanics, physiology, morphology, ecology and evolution. Springer, UK. (2011).
29. Kaplan, E. \& Hegarty, C. Understanding GPS: Principles and Applications. Artech House. 2005.
30. Andersson, M. \& Wallander, J. Kin selection and reciprocity in flight formation? Behav. Ecol. 15, 158-162 (2003).
31. Petit, D. R. \& Bildstein, K. L. Development of formation flying in juvenile white ibises (Eudocimus albus). Auk 103, 244 (1986).
32. Rands, S. A., Cowlishaw, G., Pettifor, R. A., Rowcliffe, J. M. \& Johnstone, R. A. Spontaneous emergence of leaders and followers in foraging pairs. Nature 423, 432434 (2003).
33. Biro, D., Sumpter, D. J. T., Meade, J. \& Guilford, T. From compromise to leadership in pigeon homing. Curr. Biol. 16, 2123-2128 (2006).
34. Fisher, N. I. Statistical analysis of circular data. Cambridge University Press. (1993).
35. Mardia, K. \& Jupp, P. Directional Statistics. Wiley \& Sons, New York, NY, USA. (1999).
36. Sprent, P. \& Smeeton, N. C. Applied nonparametric statistical methods. Taylor \& Francis. Boca Raton, FL. USA. (2007).
37. Batschelet, E. Circular statistics in biology. Academic Press. London. UK. (1981).
38. Wiltschko, W. et al. Lateralisation of magnetic compass orientation in a migratory bird. Nature. 419, 467-470. (2002).
39. Holland, R. A. et al. Testing the role of sensory systems in the migrating heading of a songbird. J. Exp. Biol. 212, 4065-4071. (2009).
40. Hubel, T. Y. et al. Wake structure and wing kinematics: the flight of the lesser dogfaced fruit bat, Cynopterus brachyotis. J. Exp. Biol. 213, 3427-3440. (2010).
41. Hubel, T. Y. et al. Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat. J. Roy. Soc. Interface 9, 1120-1130. (2012).
42. Kroner, E. Dislocations and the Biot-Savart law. Proc. Phy. Soc. 68, 53.
43. Griffiths, D. J. Introduction to electrodynamics. Prentice Hall. UK. (1998).

SUPPLEMENTARY TABLE 1

Statistical parameters and summary for circular statistical analysis of wing-beat phasing (see Supplementary Information Text). $P<0.05$ indicates a significant directional preference. When flying in a favoured V position, birds exhibit significant temporal and spatial phasing of their wing-beats, which is absent when in a streamwise position. For the favoured V position, 165 bird-bird pairs were analysed, which incorporated 3816 flap-flap interactions. For the streamwise position, 160 bird-bird pairs were analysed, incorporating 3153 flap-flap interactions.

SUPPLEMENTARY TABLE 2

Raw data used for phasing analysis.

SUPPLEMENTARY FIGURE 1

Confirmation that movement within the flock is not a result of potential logger measurement error. The red circles (a) represent the positions of the birds, for all birds and all times, with respect to the flock centroid. From this, the shortest distance (red lines) to the 45 degree line (blue line) was calculated and the position was projected on the 45 degree line, and then the distance between projected position and green dot (the centroid) was calculated (a). The standard deviations (SD) are from the blue perpendicular line rather than the absolute distance, and represent how much the position varies with respect to the line. A mean SD was then
calculated for each perpendicular/parallel relationship (b,c). The positioning of all individuals varies more along the line than out from the line (c). If the changes in position were logger measurement error alone, the variation in perpendicular and parallel distance and position would be expected to be equal. Instead, there is greater variability along the 45^{0} line, indicating apparent motions within the V formation where not merely logger error artefact.

SUPPLEMENTARY FIGURE 2

Median spatial phase bounded by 95% confidence intervals (grey shading) for flying in the most populated 1 m square (V formation, a, $n=165$ bird-bird pairs) or in a 0.5 m region directly behind for 4 m streamwise (b, $n=160$ bird-bird pairs).

SUPPLEMENTARY FIGURE 3

Alternative representation of Fig. 3 plots in Cartesian coordinates. The black line indicates the predicted temporal phase (directly upward being in phase - flapping at the same time) as a function of distance from relative 'ahead' bird (indicated by radial distance). The temporal phase is predicted from 1) the median spatial phase at the most populated 1 mx 1 m region (V formation, a) or the region directly behind each 'ahead' bird (0.5 m across, 4 m behind, \mathbf{b}), and 2) the mean measured wavelength between birds for a 0.25 mx 0.25 m area along a transect in line with the most populated region (a) or directly streamwise, nose-to-tail (b). Median measured values for each area within each transect (grey dots; grey curves denote 95% confidence intervals of the median) broadly match prediction up to 4 m between birds.

SUPPLEMENTARY FIGURE 4

Phase data as for Fig. 3 and Supplementary Fig. 3, but for an extended streamwise range, also indicating the number of bird-bird pairs of flap-flap interactions has histograms, either in line
with the V favoured position (a), or directly streamwise, nose-to-tail (b). Note that the underlying (grey) line is not the same as shown (black line) in Fig. 3 and Supplementary Fig. 3. In this case, it shows the phase predicted to be optimal through theoretical, supported by numerical modelling. Maximum benefit would be achieved in line with the V favoured position if the following bird wings exactly followed the trailing wingtip vortices - and so, approximately, the wingtip path - of the bird ahead; the wings should be 'in' spatial phase, or 'in' temporal phase every whole-integer wavelength behind the bird ahead. Minimum detriment due to downwash for a bird flying directly behind another if the wingpaths were out of phase; the wings should flap in temporal antiphase every whole-integer wavelength behind the bird ahead.

SUPPLEMENTARY FIGURE 5

Three panelled figure focusing on 43 minutes of one migratory flight for the 14 Northern bald ibises, detailing: (a) GPS trace of the 14 birds, the close proximity of the individuals precluding the identification of single traces. An example of a single flight trace, imposed over Google Earth ${ }^{\mathrm{TM}}$ (Landsat), can be seen in Supplementary Photo 2 as a KML file. Further details can be found in Supplementary Fig. 6. (b) average speed (\pm SD) and, (c) average flap frequency (\pm SD). The shaded grey area refers to the 7 minute section of clear V formation flight used for subsequent analysis (see Fig. 2, and Supplementary Fig. 6).

SUPPLEMENTARY FIGURE 6

Highlight of the grey shaded area in Supplementary Fig. 5, highlighting the 7 minute V formation section of migratory flight for the 14 Northern bald ibises, detailing: (a) GPS trace of the 14 birds. An example of a single flight trace, imposed over Google Earth ${ }^{\text {TM }}$ (Landsat), can be seen in Supplementary Photo 2 as a KML file. The blue line represents the path of the paraplane containing the foster parent. (b) average speed ($\pm \mathrm{SD})$ and (c) average flap frequency $(\pm$ SD). (d) example dorsal acceleration trace taken from the 300 Hz Inertial Measurement

Unit. The black box positioned at 150 s refers to the zoomed in section displayed in (e), which demonstrates how each flap was detected via our peak detect analysis (see Full Online Methods). The red line denotes the raw trace, and the blue line the filtered data. The circles highlight position of identified peaks.

SUPPLEMENTARY FIGURE 7

Location histogram of the 7 minute flight section, showing position of individual ibis within the V formation, measured via a 5 Hz GPS data logger. The grey scale refers to the duration (s) a bird was present in each 0.25 mx 0.25 m grid. The outer red line denotes the flock shape for the entire 43 minutes duration of the flight, superimposed around the 7 minute section (See Fig. 1b). The red line encloses 95% of available data points.

SUPPLEMENTARY PHOTO 1

Photograph of a Northern bald ibis, showing data logger attachment via a Velcro ${ }^{\text {TM }}$ fastening to a plate, which in turn is attached to a harness.

SUPPLEMENTARY PHOTO 2

Google Earth ${ }^{\text {TM }}$ (Landsat, KML file) image displaying the full flight of the ibis flock, recorded via the 5 Hz GPS data logger.

SUPPLEMENTARY VIDEO 1

An animated GIF showing a section of the ibis flight, taken from the 5 Hz GPS logger data. Each individual bird is identified by a number displayed on the tip of the left wing. To play the Video, download the file and open in a web browser. The Video will then play automatically.

SUPPLEMENTARY VIDEO 2

A short video clip of the ibis flying behind the paraplane during a training flight.

