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Many species travel in highly organised groups1-3. The most quoted function of these 11 

configurations is to reduce energy expenditure and enhance locomotor performance of 12 

individuals within the assemblage4-11.  The distinctive V formation of bird flocks has long 13 

intrigued researchers and continues to attract both scientific and popular attention4,7,9-14. 14 

The well held belief is that such aggregations give an energetic benefit for those birds 15 

which are flying behind and to one side of another bird through using the regions of 16 

upwash generated by the wings of the preceding bird4,7,9-11, though a definitive account of 17 

the aerodynamic implications of these formations has remained elusive. Here we show 18 

that individuals flying within a V flock position themselves in aerodynamically optimum 19 

positions, in so far as they agree with aerodynamic theoretical predictions. Furthermore, 20 

we demonstrate that birds exhibit wingtip-path coherence when flying in V positions, 21 

flapping spatially in phase enabling upwash capture to be maximised throughout the 22 

entire flap cycle. In contrast, when birds fly immediately behind another bird – in a 23 

streamwise position – there is no wingtip path coherence; the wing-beats are in spatial 24 

anti-phase. This could potentially reduce the adverse effects of downwash for the 25 

following bird. These aerodynamic accomplishments were previously not thought 26 

possible for birds because of the complex flight dynamics and sensory feedback that 27 
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would be required to perform such a feat12,14. We conclude that the intricate mechanisms 28 

involved in V formation flight indicate remarkable awareness of, and ability to either 29 

sense or predict, the spatial wake structures of nearby flock-mates; and suggest that birds 30 

in V formation have phasing strategies to cope with the dynamic wakes produced by 31 

flapping wings. 32 

Fixed-wing aerodynamic theories have predicted the exact spanwise positioning that birds 33 

should adopt within a V formation flock to maximise upwash capture4,9-14. The primary 34 

empirical evidence to confirm that this mechanism is used is a reduction in heart rate and wing-35 

beat frequency in pelicans flying in a V formation7. There is a general lack of experimental 36 

data from free-flying birds, mainly due to the complications of measuring the intricate and 37 

three-dimensional complexity of formation flight, and the lack of appropriate devices to 38 

monitor and record such information. Therefore, the precise aerodynamic interactions which 39 

birds employ to exploit upwash capture have not been identified. To investigate the purported 40 

aerodynamic interactions of V formation flight, we studied a free-flying flock of critically 41 

endangered Northern bald ibises (Geronticus eremita) (Fig. 1a). We used novel technology15,16 42 

to measure the position, speed and heading of all birds within a V formation. We recorded 43 

position and every wing flap of 14 birds during 43 minutes of migratory flight using back-44 

mounted integrated Global Positioning System (5 Hz) (GPS) and inertial measurement units 45 

(300 Hz) (IMUs) (see Full Online Methods)15,16. The precision of these measurements allows 46 

the relative positioning of individuals within a V to be tracked, and the potential aerodynamic 47 

interactions to be investigated at a level and complexity not previously feasible.  48 

During a 7 minute section of the flight, where the majority of the flock flew in approximate V 49 

formation in steady, level and planar direct flight, (see Full Online Methods), we found wing 50 

flaps occurred at an angle of, on average, 45 degrees to the bird ahead (or behind), and 51 

approximately 1.2 m behind (Fig. 1b, c, d). The most populated 1 m by 1 m region was 0.49 m 52 

to 1.49 m behind (“streamwise”) and to the side of the bird ahead. The centre of the most 53 



3 
 

populated (0.25 m) spanwise region was at 0.904 m, resulting in a wingtip overlap9-13 of 0.115 54 

m (Fig. 1c, d, wingspan b = 1.2 m). This falls within the bounds of fixed-wing theory 55 

predictions9-13 for maximising the benefits from upwash, which range from zero wingtip 56 

overlap (assuming no wake contraction4) to, maximally, 0.13 m (assuming elliptical loading 57 

over the pair of wings, and full wake contraction from wingspan b to π b /4) 9. 58 

During this 7 minute section of V formation flight, individual birds show a certain degree of 59 

positional infidelity within the V flock (Fig. 2, see also Supplementary Figure 1 and 60 

Supplementary Video 1). While individuals contribute to the statistical V formation, their 61 

positioning is inconsistent. Certain individuals showed general preferences for a particular area 62 

within the V formation, but the variability in positioning within the flock resulted in no clear 63 

leader (see Supplementary Information for further discussion).  64 

While we observe that, when flying in a V, ibises position themselves in fixed-wing 65 

mathematically predicted positions4,9-11, the wake of flapping birds (in this study, ibises spent 66 

97% of their time flapping; Full Online Methods) is likely to be complex9-14. Wingtip path 67 

coherence, where a flying object flaps its wings in spatial phase with that of the individual it is 68 

following, has been proposed as a method that would maximise upwash capture in V formation 69 

flight of birds and flying robotic devices12. Whether birds are able to take advantage of this 70 

additional level of complexity present in flapping flight (in comparison to that of fixed-wing 71 

flight) had previously remained unanswered.  72 

Within the ibis flock, individual flaps for each bird were described from the dorsal acceleration 73 

signal from the IMU15. The temporal phase 
!
φtemporal  is defined here as the proportion of a flap 74 

cycle of a leading bird at which a following bird initiates a flap. Spatial phase 
!
φspatial  makes use 75 

of the temporal phases, and takes account of the number of wavelengths, λ , between the bird 76 

ahead and the bird behind: 77 
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!!φspatial =φtemporal −2πλ  78 

A spatial phase of zero would indicate that, were the birds to be directly following each other, 79 

the wingtip paths would match.  80 

In the most populated 1 m by 1 m favoured V position (Fig. 1c), Rayleigh’s test17 for circular 81 

statistics indicates a significant unimodal bias in both temporal (Rayleigh, P = 0.018, mean 82 

phase = 0.857; Hodges-Ajne, P = 0.012) and, more strongly, spatial (Rayleigh, P = 0.003, mean 83 

phase = -1.155; Hodges-Ajne, P = 0.004) phases (Fig. 3a, b) (see Supplementary Table 1 for 84 

further statistics; Supplementary Figure 2a, 3a, 4a). Flapping in spatial phase indicates that the 85 

wing of a following bird goes up and down following the path through the air previously 86 

described by the bird ahead. The following bird then benefits from consistently flapping into 87 

the upwash region from the preceding bird (Fig. 3b, c), presumably reducing the power 88 

requirements for weight support12,14  89 

In contrast, birds flying directly behind, tracking the bird ahead in a streamwise position 90 

(sampled region 0.5 m across, 4 m streamwise, Fig. 1c) flap in close to spatial antiphase 91 

(median = 2.897, where precise antiphase would be +/-3.142), significantly (P < 0.05) deviating 92 

from flapping ‘in’ spatial phase (see Supplementary Table 1 for further statistics; 93 

Supplementary Figure 2b, 3b, 4b). As such, the wingtip paths of the following bird do not 94 

match those of the bird they are following, and the wingtip paths are close to maximally 95 

separated. Birds flying directly behind another bird in a streamwise location flap in spatial 96 

antiphase (Fig. 3d, e, see also Supplementary Figure 2b, 3b), potentially reducing the adverse 97 

effects of downwash (Fig. 3f), both in terms of magnitude and direction. If this position was 98 

aerodynamically adaptive, it would be predicted to be favoured at higher speeds, where parasite 99 

power is relatively high18, compared with the induced power costs of weight support; forms of 100 

slipstreaming can reduce the drag experienced by followers5,6,8,19, even in cases where there is 101 

zero net horizontal momentum flux in the wake (i.e. drag=thrust) – as in steady swimming – 102 

due to temporal or local spatial5,20,21 fluctuations from mean wake conditions. Whether the 103 
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position immediately behind is accidental or intentional, and whether it offers any aerodynamic 104 

advantage or cost, is currently unclear. However, the wing-beat phasing observed when in this 105 

position would serve to displace the following bird's wings from regions of greatest downwash 106 

(presumably immediately inboard of the trailing wing tip vortices, close to wing tip paths 107 

described by the previous bird), through most of the flap cycle. 108 

In transects both directly streamwise and in line favoured V position (Fig. 1c), temporal phase 109 

increases in proportion with distance behind the focal bird (Fig. 3a, d), with a full 2π cycle 110 

change in phase over a complete wavelength; spatial phase is approximately maintained up to 111 

4 m behind the leading bird. Previously, there was much uncertainty about spatial wing-beat 112 

phasing and wingtip path coherence in flapping organisms. The only prior biological evidence 113 

of this phenomenon comes from tethered locusts, where distance manipulations between a 114 

leading locust and a follower altered the phase patterns of their wing-beats22,23. Physical models 115 

additionally support the potential for aerodynamic advantage due to phasing: appropriate 116 

timing between tandem flapping model dragonfly wings improves aerodynamic efficiency24. 117 

Theoretical engineering models have taken into consideration flapping flight, and the 118 

additional benefits a flapping wing may accrue in formation flight12,14. Such models have 119 

suggested that upwards of 20% variation exists in the induced power savings to be gained, if 120 

flapping is done optimally in spatial phase, versus out of phase12 (Supplementary Figure 4).  121 

Here, we show that ibis flight in V formation does, on average, match fixed-wing aerodynamic 122 

predictions (Fig. 1c, d), but that flock structure is highly dynamic (Fig. 2). Further, temporal 123 

phasing of flapping relates to both streamwise and spanwise position. This indicates remarkable 124 

awareness of, and ability to respond to, the wingpath – and thereby the spatial wake structure 125 

– of nearby flock-mates. Birds flying in V formation flap with wingtip path coherence – the 126 

wingtips take the same path – placing wings close to the oscillating positions of maximal 127 

upwash. In contrast, birds flying in line flap in spatial antiphase – the wingtip paths are 128 

maximally separated – consistent with avoidance of adverse downwash. This raises the 129 
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possibility that, in contrast with conventional aircraft, following birds may be able to benefit 130 

from ‘drafting’ while, to a certain extent, avoiding an increased cost of weight support by 131 

evading localised regions of downwash. Optimal flight speeds would differ between solo flight, 132 

V formation flight and (whether net-beneficial or not) in-line flight, potentially providing some 133 

account for the unstable, dynamic nature of V formation flocks. 134 

METHODS SUMMARY 135 

Measurements: We equipped 14 juvenile Northern bald ibises with back-mounted 136 

synchronised GPS (5 Hz) and inertial measurement units (IMUs, 300 Hz), mass 23 g 137 

(Supplementary Photo 1), which are custom made within our laboratory, and have been tested 138 

and validated for accuracy and precision15,16. At the start of migration, the birds mass was 1.30 139 

± 0.73 kg, the 23 g loggers comprising approximately 3% of the body mass of the smallest bird. 140 

This is below the recommended 5% for flying animals25. The ibises form part of a large-scale 141 

conservation programme and had been hand-reared at Salzburg Zoo (Austria), imprinted onto 142 

human foster parents, and taught to follow a powered parachute (paraplane) to learn the 143 

migration routes (Full Online Methods). Experiment protocols were approved by the RVC local 144 

Ethics and Welfare Committee. A GPS trace of the ibis flight imposed over Google EarthTM 145 

(Landsat) can be found in Supplementary Photo 2 as a KML file. GPS data was post-processed 146 

using GravNav WaypointTM software15,26, and IMU data via custom-written MATLAB 147 

(R2012b, Mathworks, Natick, Mass., USA) programmes16,26. Mean flap frequency, speed and 148 

peak detection protocols are detailed in Supplementary Figures 5 and 6. For further details on 149 

post-processing, see Full Online Methods.  150 

Statistical Analysis: Circular statistics17 were carried out in LabVIEW (NI, Austin, Texas, 151 

USA). First order (Rayleigh test) and second order (Hodges-Ajne) statistics were employed to 152 

test the phasing of wing-beats for significant deviations from random distribution. For further 153 

details on statistical analysis, see Full Online Methods.  154 
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Full Methods and any associated references are available in the online version of the paper at 155 

www.nature.com/nature. 156 
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Figure Legends 226 

Figure 1 V formation flight in migrating ibises. a, Northern bald ibises (Geronticus eremita) 227 

flying in V formation during a human-led migratory flight (photo credit, M. Unsöld). b, 3D 228 

location histogram of the 7 minute flight section, showing position of individual ibis within the 229 

V formation, with respect to flock centroid, measured via a 5 Hz GPS data logger. The colour 230 
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scale refers to the duration (s) a bird was present in each 0.25 m x 0.25 m grid. A plot detailing 231 

the formation shape for the duration of the entire flight can be found in Supplementary Figure 232 

7. c, histogram of number of flaps (colour coded) recorded within each 0.25 m x 0.25 m region 233 

between all birds and all other birds. The majority of flaps occurred at an angle of 234 

approximately 45 degrees to the bird ahead (or behind). Transects denoted by dashed lines, 235 

directly behind or along the most populated V favoured position (just inboard of wingtip to 236 

wingtip), are the same as those detailed in Fig. 3. d, a histogram detailing the total number of 237 

flaps recorded between each bird-bird pair, with respect to position of the following bird. The 238 

shaded area (i-ii) denotes the limits of optimal relative positioning, based on fixed-wing 239 

aerodynamics. 240 

Figure 2 Histograms demonstrating the positional infidelity for each Northern bald ibis 241 

within the V formation during the migratory flight. The grey shaded V shape behind each 242 

individual histogram (n = 14) denotes the structure for all individuals within the flock (see Fig. 243 

1b). The colour code refers to the duration (s) a bird was present in each 0.25 m x 0.25 m grid. 244 

While individual birds showed some bias towards the front, back, left or right regions of the V 245 

formation, these positions were not maintained rigidly.  246 

Figure 3 Geometric and aerodynamic implications of observed spatial phase relationships 247 

for ibises flying in a V formation. Temporal phase increases as a function of position behind 248 

more advanced birds (median +/- 95% CI of phase for each mean bird-bird interaction within 249 

a region).  When positioned at close to a wavelength in line with the V favoured position (a-250 

c), wingtip paths approximately match: observed temporal phases agree with those predicted 251 

from the significant spatial phase relationship (thick black lines, +/- 95% CI) at the most 252 

populated 1 m x 1 m region, using the mean wavelength measured for each position. When 253 

positioned directly in line (d-f), following birds flap in spatial antiphase, maximally separating 254 

wingtip paths. In this case the model line is derived from the median spatial phase for all bird-255 

bird interactions up to 4 m directly behind. Induced flow velocities (blue arrows, c, f), due to 256 
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the trailing wingtip vortices of the bird ahead (vortex cores denoted by grey circles), are 257 

modelled as infinitely long, parallel vortex filaments. Birds flying in typical V formation keep 258 

their wings close to the region of maximal induced upwash (c) throughout the flap cycle. Birds 259 

flying directly behind flap in spatial antiphase, potentially reducing the adverse effects of 260 

downwash (f), both in terms of magnitude and direction. For scale, the downwash directly 261 

between the vortices would be (-) 0.3 m/s, between trailing vortices for a behind a bird of mass 262 

1.3 kg, span 1.2 kg at a speed of 15 m/s (no account is taken of flapping, viscosity or wake 263 

contraction). Alternative representations of (a) and (d) as Cartesian plots can be found in 264 

Supplementary Figure 3, and Supplementary Figure 4 details the extended data array displayed 265 

beyond the presented model line.  266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

ONLINE METHODS 277 
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Birds. Northern bald ibises (Geronticus eremita) (n = 14) were hatched at Salzburg Zoo in 278 

March 2011, and imprinted immediately onto human foster parents (S.H. and D.T.). At four 279 

months of age, the birds began training flights behind a powered parachute (paraplane). 280 

Training flights lasted between 1-4 hours, and were up to 5 km in length. At the end of July, 281 

birds were fitted with dummy loggers to prepare them for being equipped with data loggers for 282 

the long-distance migratory flights. The ibis flock comprised 5 females and 9 males. The mass 283 

of birds at the start of migration was 1.30 ± 0.73 kg. As such, the 23 g loggers comprised 284 

approximately 3% of the body mass of the smallest bird. This is comfortably below the 285 

recommended 5% for flying animals25,27. The loggers were externally attached, using VelcroTM 286 

and a harness (Supplementary Photo 1). The dummy loggers remained on when birds were at 287 

rest in the aviary, which was at all times bar the migratory flights. The first migratory flight 288 

began in August. The total migratory flight plan was from the training site near Salzburg 289 

(47.75377N, 13.052959E), to Orbetello, Italy (42.425484N, 11.232662E). Once en-route, birds 290 

were flown, on average, every 3rd day. During flights, the birds followed the paraplane, but 291 

were typically to the side of the vehicle, on average 147 m laterally, consistently to the left, 292 

except for one turn (see Supplementary Fig. 5 and 6). All loggers functioned fully. The birds 293 

were flown early in the morning (6 am departure), due to later flight times increasing the 294 

occurrence of thermalling and gliding, resulting in the birds not following the paraplane 295 

sufficiently. A GPS trace of the full flight, imposed over Google EarthTM (Landsat), can be 296 

seen in Supplementary Photo 2 (as a KML file). The recorded flight was the 2nd stage of the 297 

migration.  298 

Data loggers. Further information pertaining to the loggers can be found in detail in 299 

Usherwood et al.15 and Wilson et al.16. Briefly, GPS was recorded at 5 Hz and data were post-300 

processed differentially over the short baseline between base station and ibises, using Waypoint 301 

GrafNavTM 8.10. L1 C/A code pseudo-range measurements were used to calculate the position 302 

of each GPS loggers, with velocity determined from L1 Doppler measurements. Using this 303 
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approach can provide positional accuracy to 0.3 m and speed accuracy better than 0.1 m/s. 304 

Accelerometer data were recorded at 300 Hz.  305 

Initial data processing. The flight was checked for any periods when the birds had maintained 306 

periods of circling flight (note we do include one circle in our sequence) through examination 307 

of the GPS and accelerometer traces, and these sections were removed (less than 4 minutes of 308 

the total flight duration). The remaining flight, therefore, consisted of straight-line flight. The 309 

take-off and landing periods were removed, as, when taking off, it took approximately 4 310 

minutes for the birds to form a coherent flock, and to follow the paraplane. Similarly, when the 311 

paraplane began to descend at the end of the flight, the birds separated and begin to glide during 312 

descent. The position of the paraplane was recorded and tracked via a data logger (see 313 

Supplementary Fig. 5 and 6). The GPS, recorded at 5 Hz, was interpolated (MATLAB, 314 

R2012b, Mathworks, Natick, Mass., USA) to the same sampling rate as the accelerometer data, 315 

at 300 Hz. The interpolation replaced missing values in the GPS. GPS and accelerometer data 316 

were passed through a 4th order Butterworth filter (MATLAB). For the production of the 317 

histograms (Fig. 1 b, c), the original GPS values were used after being interpolated to a constant 318 

5 Hz sampling frequency. In Fig. 1b and Fig. 2, the colour scale refers to the duration a bird 319 

was present in each 0.25 m x 0.25 m grid. For Fig. 1c, the colour scale refers to the number of 320 

flaps recorded in each grid. For Fig. 1c, the regional transect labelled ‘directly behind’ is offset 321 

because, for display and analysis purposes, all data from the left side is mirrored to the right so 322 

all data points are on one side, and so the centre of the first sampled region lies 0.125 m behind 323 

the lead bird. Dorsal acceleration was used to determine each wing flap, and the upper reversal 324 

point28 of the flap cycle (see Supplementary Fig. 5 and 6). Note that this reversal point in 325 

acceleration of the back need not relate to peak wing elevation – or indeed any particular wing 326 

kinematic – for the phasing analysis to function. 327 

Height. Height was recorded. The precision of height measurements, however, is lower than 328 

for horizontal positions29. This is because there are no satellites below the birds, and this 329 
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geometry of the satellites causes a reduction in precision29. We do not consider vertical position 330 

due to the small 'signal' of interest (very slight vertical deflections) to the relatively high 'noise' 331 

(inevitable due to GPS satellite geometry). We chose a section where, according to the 332 

available error measurement calculated by WaypointTM (see ‘Data loggers’), the height values 333 

were relatively consistent and that during this flight portion, the birds were flying close to the 334 

same horizontal plane.  335 

Calculating flock formation and individual positioning (Figure 1b, 2, Main Article). In 336 

order to establish positioning of individuals and structure within the flock, a flock centroid was 337 

determined. To calculate the centroid of the flock, the MATLAB function “centroid” was used. 338 

This function calculates the centroid of a polygon. The MATLAB centroid function treated 339 

each bird as a point of a polygon, and determined the centroid for each time point. An average 340 

speed was calculated and any birds with a speed discrepancy higher than 3 m/s away from the 341 

mean flock speed were removed for that time point. From this, the resultant centroid was 342 

calculated now containing only birds close in position and speed. A rotation matrix was applied 343 

to the data to reorientate the heading so all birds were heading ‘up’, and the direction of the 344 

centroid is always on the positive ‘Y’ direction. The resultant matrix comprised a position for 345 

each bird for each sampling point. Theta (Ɵ), the angle between each bird and the lead bird, 346 

was calculated, transforming Cartesian to polar coordinates (Cart 2 Pole, MATLAB). For data 347 

presentation in the histograms (Fig. 1b), the field of view being set to 15 m by 15 m, and the 348 

area was divided in a 60-by-60 grid of bins (0.25 m x 0.25 m). Position 0/0 is the centroid. The 349 

heat histograms are displayed as contour plots with 5 contour levels.  350 

During the 7 minute section of V formation flight, individual birds show a certain degree of 351 

positional infidelity within the V flock (Fig. 2, see also Supplementary Figure 1 and 352 

Supplementary Video 1). While individuals contribute to the statistical V formation, their 353 

positioning is inconsistent. Certain individuals showed general preferences for a particular area 354 

within the V formation, whether left, right, front or rear, but the variability in positioning 355 
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resulted in no clear leader within the flock (Fig. 2). Navigational ability and kin selection have 356 

been proposed as major drivers of leadership in V formation flight30, with more experienced 357 

birds or parents of a family group taking the lead30. The ibis flock in the present study 358 

comprised birds of the same age (< 1 year old), with no prior navigational experience of the 359 

route and no parent-offspring relationships. The absence of immediate kin selection and learnt 360 

navigational ability as possible factors determining a V formation structure in the recorded 361 

flight strengthens the evidence for an aerodynamic function behind the V formation observed 362 

in the ibis. The young age of the birds, however, may be the main factor as to why there is a 363 

lack of a clear leader in the ibis flock, contrasting with previous observations of adult ibises, in 364 

which consistent leaders in flocks were identified31. Spontaneous and inconsistent leadership 365 

has been identified in bird flocks either where no consistent social hierarchy exists32, or when 366 

no prior knowledge of a route is known33. For other ‘classic’ V formation fliers, the first 367 

migration is a significant cause of mortality for young birds, even when migrating with parents. 368 

As such, aerodynamic mechanisms that reduce the energetic cost of (albeit only very 369 

infrequent) migratory flight, may present considerable selection advantage.  370 

Movement within flock (Supplementary Figure 1). Movement within the V formation was 371 

investigated by taking a 45 degree line, the preferred angle for positioning with the V (Fig. 1c) 372 

as a transect from the apex of the V. The apex was determined by the intersection of two 450 373 

lines, down each side of the V formation. For every bird for each time point, the distance was 374 

taken for how far it is positioned from the 45 degree perpendicular transect line. For simplicity 375 

of analysis, all data were flipped (mirrored) to all be plotted against one 45 degree line. For 376 

Supplementary Fig. 1 (a), the red circles represent the original positions of the birds, for all 377 

birds and all times. From this, the shortest distance to the 45 degree line was calculated (blue 378 

line) and the position was projected on the 45 degree line, and then the distance between 379 

projected position and green circle (the centroid) was calculated. The standard deviations (SD) 380 

are from the blue perpendicular line rather than the absolute distance, and represent how much 381 
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the position varies with respect to the line. A mean SD was then calculated for each 382 

perpendicular/parallel relationship (Supplementary Fig. 1, b,c). The positioning of all 383 

individuals varies more along the line than out from the line (Supplementary Fig. 1c). If the 384 

changes in position were due only to logger measurement error, the variation in perpendicular 385 

and parallel distance and position would be expected to be equal. Because most of the variation 386 

is present along the line, the variation can be confidently attributed predominantly to bird 387 

movement, not logger noise. 388 

Circular statistics and phasing analysis. Circular statistics were applied using LabVIEW (NI, 389 

Austin, Texas, USA), following that of Fisher34-37. All height data were included for circular 390 

statistical analysis, but the data were not filtered. The filtered X and Y data were used, as 391 

detailed above. The X and Y positions were calculated with respect to the direction of travel.  392 

The relative positions (in the direction of flight) and phase relationships (as a proportion of the 393 

flap cycle of each ‘ahead’ bird) was determined for every bird following every other bird. 394 

Determining appropriate independent sample criteria when considering phases is vital37, and 395 

presents a challenge when analyzing phase relationships. Consider the case of two birds flying 396 

at the same relative position and at the same frequency; they would maintain the same phase 397 

relationship indefinitely. Each flap would certainly not be considered an independent sample. 398 

As a conservative alternative, we take a mean phase for any bird-bird pairing for a given area 399 

to be an independent sample; no account is taken of the length of time or number of flaps spent 400 

within the area. Perversely, this technique actually makes use of the variability in relative 401 

position, and would be poor for absolutely rigid V formations. 402 

Statistical tests34-37 were performed for two regions, combining left and right sides: one 403 

representing V formation flight, (from 0.49 m to 1.49 m both spanwise and streamwise), 404 

containing the highest density of flaps; the other for nose-to-tail, streamwise flight, covering a 405 
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volume 0.25 m spanwise from midline (so 0.5 m behind) and 4 m behind. This provided n=165 406 

and n=160 bird-bird pairs for V formation and nose-to-tail regions respectively. 407 

The Rayleigh test was applied to determine the presence of a single unimodal direction in phase 408 

without preconceptions of any mean direction. This found a significant departure from 409 

randomness – a significant unimodal bias – in phase (whether temporal or spatial) for the V 410 

formation region. Both Rayleigh’s test (parametric) and Hodges-Ajne34-37 (a non-parametric 411 

test) on this region indicate that both the temporal phase and the spatial phase (taking into 412 

account the wavelength of whichever bird is ahead) are significantly different from those that 413 

would be found from a random distribution38,39.  414 

The median phase for a given region – and its 95% confidence intervals – allows a specified 415 

alternative to be tested against. Fig. 3a,d and Supplementary Fig. 3a,b shows the median 416 

statistics in graphical form for the two regions. Zero or ‘in’ spatial phase falls outside the 95% 417 

confidence intervals for the nose-to-tail region. 418 

The median spatial phases for the two regions described above were used to predict the 419 

temporal phases for 0.25 m x 0.25 m along two streamwise transects using the wavelength 420 

measured for each volume along the transect. If the median spatial phase was π – out of phase, 421 

as it is close to in the nose-to-tail transect – we would predict it to be π every integer number 422 

of wavelengths, and 0 or ‘in’ temporal phase at ½, 3/2, 5/2 etc. wavelengths. The model – with 423 

bounding confidence intervals due the spatial median – is shown as lines in Fig. 3a,d. Measured 424 

median temporal phases (+/- 95% confidence intervals of the median) broadly match the 425 

predicted values (see also Supplementary Fig. 3a,b, which gives the same data in Cartesian 426 

form). While the fit between model and observed temporal phases is visually convincing, 427 

formal statistical treatment is avoided because of uncertainty over independence between 428 

neighbouring spatial regions along the transects. 429 
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Modelled induced flow behind flapping birds. The implications of flap phasing in terms of 430 

potential interaction with induced flows are shown in Fig. 3 (c,f). For this model, it is assumed 431 

that the wingtip vortex left behind a bird ahead of a follower (the grey bird) follows the wingtip 432 

path through space – the convection of the vortex core (which, on average, will be inwards and 433 

downwards) is neglected40,41. Induced flow-fields are modelled following the Biot-Savart 434 

law42,43, treating the wingtip vortices as infinitely long, parallel filaments; no account is taken 435 

of variation in lift throughout the wingstroke cycle. Induced flows near the vortex cores are not 436 

modelled; these regions are represented by grey circles. That, while being correct given the 437 

reductions and assumptions described, should not be taken as accurate quantitative calculations 438 

of the local flowfield. However, the principles they demonstrate – the strongest region of 439 

upwash and downwash close outboard and inboard respectively of the wingtip path – meets 440 

basic aerodynamic expectations and recent modelling results42,43. For scale, the downwash 441 

directly between the vortices would be (-) 0.3 m/s, between trailing vortices for a behind a bird 442 

of mass 1.3 kg, span 1.2 kg at a speed of 15 m/s, (without modelling flapping or wake 443 

contraction). 444 
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 477 

SUPPLEMENTARY TABLE 1 478 

Statistical parameters and summary for circular statistical analysis of wing-beat phasing (see 479 

Supplementary Information Text). P < 0.05 indicates a significant directional preference. When 480 

flying in a favoured V position, birds exhibit significant temporal and spatial phasing of their 481 

wing-beats, which is absent when in a streamwise position. For the favoured V position, 165 482 

bird-bird pairs were analysed, which incorporated 3816 flap-flap interactions. For the 483 

streamwise position, 160 bird-bird pairs were analysed, incorporating 3153 flap-flap 484 

interactions.  485 

SUPPLEMENTARY TABLE 2 486 

Raw data used for phasing analysis. 487 

SUPPLEMENTARY FIGURE 1 488 

Confirmation that movement within the flock is not a result of potential logger measurement 489 

error. The red circles (a) represent the positions of the birds, for all birds and all times, with 490 

respect to the flock centroid. From this, the shortest distance (red lines) to the 45 degree line 491 

(blue line) was calculated and the position was projected on the 45 degree line, and then the 492 

distance between projected position and green dot (the centroid) was calculated (a). The 493 

standard deviations (SD) are from the blue perpendicular line rather than the absolute distance, 494 

and represent how much the position varies with respect to the line. A mean SD was then 495 
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calculated for each perpendicular/parallel relationship (b,c). The positioning of all individuals 496 

varies more along the line than out from the line (c). If the changes in position were logger 497 

measurement error alone, the variation in perpendicular and parallel distance and position 498 

would be expected to be equal. Instead, there is greater variability along the 450 line, indicating 499 

apparent motions within the V formation where not merely logger error artefact.  500 

SUPPLEMENTARY FIGURE 2 501 

Median spatial phase bounded by 95% confidence intervals (grey shading) for flying in the 502 

most populated 1 m square (V formation, a, n=165 bird-bird pairs) or in a 0.5 m region directly 503 

behind for 4 m streamwise (b, n=160 bird-bird pairs).  504 

SUPPLEMENTARY FIGURE 3 505 

Alternative representation of Fig. 3 plots in Cartesian coordinates. The black line indicates the 506 

predicted temporal phase (directly upward being in phase - flapping at the same time) as a 507 

function of distance from relative ‘ahead’ bird (indicated by radial distance). The temporal 508 

phase is predicted from 1) the median spatial phase at the most populated 1 m x 1 m region (V 509 

formation, a) or the region directly behind each ‘ahead’ bird (0.5 m across, 4 m behind, b), and 510 

2) the mean measured wavelength between birds for a 0.25 m x 0.25 m area along a transect in 511 

line with the most populated region (a) or directly streamwise, nose-to-tail (b). Median 512 

measured values for each area within each transect (grey dots; grey curves denote 95% 513 

confidence intervals of the median) broadly match prediction up to 4 m between birds. 514 

 515 

 516 

SUPPLEMENTARY FIGURE 4 517 

Phase data as for Fig. 3 and Supplementary Fig. 3, but for an extended streamwise range, also 518 

indicating the number of bird-bird pairs of flap-flap interactions has histograms, either in line 519 
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with the V favoured position (a), or directly streamwise, nose-to-tail (b). Note that the 520 

underlying (grey) line is not the same as shown (black line) in Fig. 3 and Supplementary Fig. 521 

3. In this case, it shows the phase predicted to be optimal through theoretical, supported by 522 

numerical modelling. Maximum benefit would be achieved in line with the V favoured position 523 

if the following bird wings exactly followed the trailing wingtip vortices – and so, 524 

approximately, the wingtip path – of the bird ahead; the wings should be ‘in’ spatial phase, or 525 

‘in’ temporal phase every whole-integer wavelength behind the bird ahead. Minimum 526 

detriment due to downwash for a bird flying directly behind another if the wingpaths were out 527 

of phase; the wings should flap in temporal antiphase every whole-integer wavelength behind 528 

the bird ahead. 529 

SUPPLEMENTARY FIGURE 5 530 

Three panelled figure focusing on 43 minutes of one migratory flight for the 14 Northern bald 531 

ibises, detailing: (a) GPS trace of the 14 birds, the close proximity of the individuals precluding 532 

the identification of single traces. An example of a single flight trace, imposed over Google 533 

EarthTM (Landsat), can be seen in Supplementary Photo 2 as a KML file. Further details can be 534 

found in Supplementary Fig. 6. (b) average speed (± SD) and, (c) average flap frequency (± 535 

SD). The shaded grey area refers to the 7 minute section of clear V formation flight used for 536 

subsequent analysis (see Fig. 2, and Supplementary Fig. 6).  537 

SUPPLEMENTARY FIGURE 6 538 

Highlight of the grey shaded area in Supplementary Fig. 5, highlighting the 7 minute V 539 

formation section of migratory flight for the 14 Northern bald ibises, detailing: (a) GPS trace 540 

of the 14 birds. An example of a single flight trace, imposed over Google EarthTM (Landsat), 541 

can be seen in Supplementary Photo 2 as a KML file. The blue line represents the path of the 542 

paraplane containing the foster parent. (b) average speed (± SD) and (c) average flap frequency 543 

(± SD). (d) example dorsal acceleration trace taken from the 300 Hz Inertial Measurement 544 
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Unit. The black box positioned at 150 s refers to the zoomed in section displayed in (e), which 545 

demonstrates how each flap was detected via our peak detect analysis (see Full Online 546 

Methods). The red line denotes the raw trace, and the blue line the filtered data. The circles 547 

highlight position of identified peaks.  548 

SUPPLEMENTARY FIGURE 7 549 

Location histogram of the 7 minute flight section, showing position of individual ibis within 550 

the V formation, measured via a 5 Hz GPS data logger. The grey scale refers to the duration 551 

(s) a bird was present in each 0.25 m x 0.25 m grid. The outer red line denotes the flock shape 552 

for the entire 43 minutes duration of the flight, superimposed around the 7 minute section (See 553 

Fig. 1b). The red line encloses 95% of available data points. 554 

SUPPLEMENTARY PHOTO 1 555 

Photograph of a Northern bald ibis, showing data logger attachment via a VelcroTM fastening 556 

to a plate, which in turn is attached to a harness.  557 

SUPPLEMENTARY PHOTO 2 558 

Google EarthTM (Landsat, KML file) image displaying the full flight of the ibis flock, recorded 559 

via the 5 Hz GPS data logger.  560 

SUPPLEMENTARY VIDEO 1 561 

An animated GIF showing a section of the ibis flight, taken from the 5 Hz GPS logger data. 562 

Each individual bird is identified by a number displayed on the tip of the left wing. To play the 563 

Video, download the file and open in a web browser. The Video will then play automatically.  564 

SUPPLEMENTARY VIDEO 2 565 

A short video clip of the ibis flying behind the paraplane during a training flight.  566 



22 
 

 567 

 568 

 569 


