5 research outputs found

    Phosphodiesterase Inhibitors in Object Recognition and Object Location Memory Tests

    No full text
    Phosphodiesterase (PDE) inhibitors prevent hydrolyzation of the second messengers cyclic adenosine monophosphate and cyclic guanosine monophosphate; they are considered promising cognitive enhancers. Object recognition and object location tests contributed significantly to the advancement of current research on PDE inhibitors in memory, ageing and Alzheimer's disease research studies

    Acute treatment with the PDE4 inhibitor roflumilast improves verbal word memory in healthy old individuals: a double-blind placebo-controlled study

    No full text
    There is ample evidence that phosphodiesterase 4 (PDE4) inhibition can improve memory performance in animal studies. In the present study, we examined the acute effects of the PDE4 inhibitor roflumilast on memory performance in healthy individuals (60-80 years of age). We tested the effects of acute roflumilast administration (100, 250, 1000 μg) in a double-blind, placebo-controlled, 4-way crossover design. Participants were first screened for their verbal word memory performance to ensure normal memory performance (within 0.5 standard deviation from norm score; n = 20) Drug effects on memory performance were tested in a verbal memory test and a spatial memory test. Reported side effects of drug treatment were registered. Roflumilast (100 μg) improved the delayed recall performance of the participants (Cohen's d, 0.69). No effects were observed in the spatial memory task. Roflumilast was well tolerated at this low dose. Although no clear adverse side effects were reported at the low dose, mild adverse events (including headache, dizziness, insomnia, and diarrhea) were reported after the 1000 μg dose. The present study provides first evidence that the PDE4 inhibitor roflumilast improves verbal memory performance in old participants. The current data encourage further development of PDE4 inhibitors for improving memory

    Recovering object-location memories after sleep deprivation-induced amnesia

    Get PDF
    It is well established that sleep deprivation after learning impairs hippocampal memory processes and can cause amnesia. It is unknown, however, whether sleep deprivation leads to the loss of information or merely the suboptimal storage of information that is difficult to retrieve. Here, we show that hippocampal object-location memories formed under sleep deprivation conditions can be successfully retrieved multiple days following training, using optogenetic dentate gyrus (DG) memory engram activation or treatment with the clinically approved phosphodiesterase 4 (PDE4) inhibitor roflumilast. Moreover, the combination of optogenetic DG memory engram activation and roflumilast treatment, 2 days following training and sleep deprivation, made the memory more persistently accessible for retrieval even several days later (i.e., without further optogenetic or pharmacological manipulation). Altogether, our studies in mice demonstrate that sleep deprivation does not necessarily cause memory loss but instead leads to the suboptimal storage of information that cannot be retrieved without drug treatment or optogenetic stimulation. Furthermore, our findings suggest that object-location memories, consolidated under sleep deprivation conditions and thought to be lost, can be made accessible again several days after the learning and sleep deprivation episode, using the clinically approved PDE4 inhibitor roflumilast

    Soluble guanylate cyclase stimulator riociguat improves spatial memory in mice via peripheral mechanisms

    No full text
    Soluble guanylate cyclase (sGC) - cyclic guanosine monophosphate (cGMP) signalling is important for healthy memory function and a healthy vascular system. Targeting sGC-cGMP signalling can therefore be a potential strategy to enhance memory processes. sGC can be targeted by using agonists, such as sGC stimulator riociguat. Therefore, this study aimed to target sGC using riociguat to investigate its acute effects on memory function and neuronal plasticity in mice. The effects of riociguat on long-term memory and a biperiden-induced memory deficit model for assessing short-term memory were tested in the object location task, and working memory was tested in the Y-maze continuous alternation task. Pharmacokinetic measurements were performed within brain tissue of mice, and hippocampal plasticity measures were assessed using western blotting. Acute oral administration with a low dose of 0.03 mg/kg riociguat was able to enhance working-, short-, and long-term spatial memory. Under cerebral vasoconstriction higher doses of riociguat were still effective on memory. Pharmacokinetic measurements revealed poor brain penetration of riociguat and its metabolite M-1. Increased activation of VASP was found, while no effects were found on other memory-related hippocampal plasticity measures. Memory enhancing effects of riociguat are most likely regulated by vascular peripheral effects on cGMP signalling. Yet, further research is needed to investigate the possible contribution of hemodynamic or metabolic effects of sGC stimulators on memory performance

    Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot

    No full text
    corecore