347 research outputs found

    Combined Small Interfering RNA Therapy and In Vivo Magnetic Resonance Imaging in Islet Transplantation

    Get PDF
    OBJECTIVE Recent advances in human islet transplantation are hampered by significant graft loss shortly after transplantation and inability to follow islet fate directly. Both issues were addressed by utilizing a dual-purpose therapy/imaging small interfering RNA (siRNA)-nanoparticle probe targeting apoptotic-related gene caspase-3. We expect that treatment with the probe would result in significantly better survival of transplanted islets, which could be monitored by in vivo magnetic resonance imaging (MRI). RESEARCH DESIGN AND METHODS We synthesized a probe consisting of therapeutic (siRNA to human caspase-3) and imaging (magnetic iron oxide nanoparticles, MN) moieties. In vitro testing of the probe included serum starvation of the islets followed by treatment with the probe. Caspase-3 gene silencing and protein expression were determined by RT-PCR and Western blot, respectively. In vivo studies included serial MRI of NOD-SCID mice transplanted with MN-small interfering (si)Caspase-3–labeled human islets under the left kidney capsule and MN-treated islets under the right kidney capsule. RESULTS Treatment with MN-siCaspase-3 probe resulted in decrease of mRNA and protein expression in serum-starved islets compared with controls. In vivo MRI showed that there were significant differences in the relative volume change between MN-siCaspase-3–treated grafts and MN-labeled grafts. Histology revealed decreased caspase-3 expression and cell apoptosis in MN-siCaspase-3–treated grafts compared with the control side. CONCLUSIONS Our data show the feasibility of combining siRNA therapy and in vivo monitoring of transplanted islets in mice. We observed a protective effect of MN-siCaspase-3 in treated islets both in vitro and in vivo. This study could potentially aid in increasing the success of clinical islet transplantation

    Left ventricular pressure-volume relationship in a rat model of advanced aging-associated heart failure.

    Get PDF
    Aging is associated with profound changes in the structure and function of the heart. A fundamental understanding of these processes, using relevant animal models, is required for effective prevention and treatment of cardiovascular disease in the elderly. Here, we studied cardiac performance in 4- to 5-mo-old (young) and 24- to 26-mo-old (old) Fischer 344 male rats using the Millar pressure-volume (P-V) conductance catheter system. We evaluated systolic and diastolic function in vivo at different preloads, including preload recruitable stroke work (PRSW), maximal slope of the systolic pressure increment (+dP/dt), and its relation to end-diastolic volume (+dP/dt-EDV) as well as the time constant of left ventricular pressure decay, as an index of relaxation. The slope of the end-diastolic P-V relation (EDPVR), an index of left ventricular stiffness, was also calculated. Aging was associated with decrease in left ventricular systolic pressure, +dP/dt, maximal slope of the diastolic pressure decrement, +dP/dt-EDV, PRSW, ejection fraction, stroke volume, cardiac and stroke work indexes, and efficiency. In contrast, total peripheral resistance, left ventricular end-diastolic volume, left ventricular end-diastolic pressure, and EDPVR were greater in aging than in young animals. Taken together, these data suggest that advanced aging is characterized by decreased systolic performance accompanied by delayed relaxation and increased diastolic stiffness of the heart in male Fischer 344 rats. P-V analysis is a sensitive method to determine cardiac function in rats

    Soluble Guanylate Cyclase Stimulation Prevents Fibrotic Tissue Remodeling and Improves Survival in Salt-Sensitive Dahl Rats

    Get PDF
    A direct pharmacological stimulation of soluble guanylate cyclase (sGC) is an emerging therapeutic approach to the management of various cardiovascular disorders associated with endothelial dysfunction. Novel sGC stimulators, including riociguat (BAY 63-2521), have a dual mode of action: They sensitize sGC to endogenously produced nitric oxide (NO) and also directly stimulate sGC independently of NO. Little is known about their effects on tissue remodeling and degeneration and survival in experimental malignant hypertension.Mortality, hemodynamics and biomarkers of tissue remodeling and degeneration were assessed in Dahl salt-sensitive rats maintained on a high salt diet and treated with riociguat (3 or 10 mg/kg/d) for 14 weeks. Riociguat markedly attenuated systemic hypertension, improved systolic heart function and increased survival from 33% to 85%. Histological examination of the heart and kidneys revealed that riociguat significantly ameliorated fibrotic tissue remodeling and degeneration. Correspondingly, mRNA expression of the pro-fibrotic biomarkers osteopontin (OPN), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and plasminogen activator inhibitor-1 (PAI-1) in the myocardium and the renal cortex was attenuated by riociguat. In addition, riociguat reduced plasma and urinary levels of OPN, TIMP-1, and PAI-1.Stimulation of sGC by riociguat markedly improves survival and attenuates systemic hypertension and systolic dysfunction, as well as fibrotic tissue remodeling in the myocardium and the renal cortex in a rodent model of pressure and volume overload. These findings suggest a therapeutic potential of sGC stimulators in diseases associated with impaired cardiovascular and renal functions

    CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes

    Get PDF
    Aims Here we investigated the mechanisms by which cardiovascular CB1 cannabinoid receptors may modulate the cardiac dysfunction, oxidative stress, and interrelated cell death pathways associated with acute/chronic cardiomyopathy induced by the widely used anti-tumour compound doxorubicin (DOX). Methods and results Both load-dependent and -independent indices of left-ventricular function were measured by the Millar pressure-volume conductance system. Mitogen-activated protein kinase (MAPK) activation, cell-death markers, and oxidative/nitrosative stress were measured by molecular biology/biochemical methods and flow cytometry. DOX induced left-ventricular dysfunction, oxidative/nitrosative stress coupled with impaired antioxidant defense, activation of MAPK (p38 and JNK), and cell death and/or fibrosis in hearts of wide-type mice (CB1+/+), and these effects were markedly attenuated in CB1 knockouts (CB1−/−). In human primary cardiomyocytes expressing CB1 receptors (demonstrated by RT-PCR, western immunoblot, and flow cytometry) DOX, likewise the CB1 receptor agonist HU210 and the endocannabinoid anandamide (AEA), induced MAPK activation and cell death. The DOX-induced MAPK activation and cell death were significantly enhanced when DOX was co-administered with CB1 agonists AEA or HU210. Remarkably, cell death and MAPK activation induced by AEA, HU210, and DOX ± AEA/HU210 were largely attenuated by either CB1 antagonists (rimonabant and AM281) or by inhibitors of p38 and JNK MAPKs. Furthermore, AEA or HU210 in primary human cardiomyocytes triggered increased reactive oxygen species generation. Conclusion CB1 activation in cardiomyocytes may amplify the reactive oxygen/nitrogen species-MAPK activation-cell death pathway in pathological conditions when the endocannabinoid synthetic or metabolic pathways are dysregulated by excessive inflammation and/or oxidative/nitrosative stress, which may contribute to the pathophysiology of various cardiovascular disease
    corecore