50 research outputs found

    Peculiar and proper habits: The use and production of academic dress in Colonial, Revolutionary, and Federal Philadelphia

    Get PDF
    This is a study of the adoption and use of academic dress at the University of Pennsylvania and its predecessor institutions, the College of Philadelphia and University of the State of Pennsylvania from approximately 1750–1830. Despite early interest of the College’s founder, Benjamin Franklin, to use academic dress to monitor student activities outside college bounds, there was soon contentious debate between the institution’s founding senior academics about whether academic dress should be used at all. By sheer force of will of its leading proponent, academic dress came into use at public ceremonies. These public ceremonies became a model for public political expression outside the academic context, eventually transforming the gown’s connection to European aristocratic institutions into the garment of scholar-artisans in a democratic republic. This close association between academic and civic ceremonial helped shape discussions in the next generation about greater distinction in academic gowns that foreshadow the development of the Intercollegiate Code of Academic Costume at the end of the nineteenth century. Throughout this history filled with well-known leaders of the American War of Independence, we also glimpse hidden figures within the pattern of academic dress at Philadelphia: the largely anonymous women who made and repaired academic gowns

    Detecting upland glaciation in Earth’s pre-Pleistocene record

    Get PDF
    Earth has sustained continental glaciation several times in its past. Because continental glaciers ground to low elevations, sedimentary records of ice contact can be preserved from regions that were below base level, or subject to subsidence. In such regions, glaciated pavements, ice-contact deposits such as glacial till with striated clasts, and glaciolacustrine or glaciomarine strata with dropstones reveal clear signs of former glaciation. But assessing upland (mountain) glaciation poses particular challenges because elevated regions typically erode, and thus have extraordinarily poor preservation potential. Here we propose approaches for detecting the former presence of glaciation in the absence or near-absence of ice-contact indicators; we apply this specifically to the problem of detecting upland glaciation, and consider the implications for Earth’s climate system. Where even piedmont regions are eroded, pro- and periglacial phenomena will constitute the primary record of upland glaciation. Striations on large (pebble and larger) clasts survive only a few km of fluvial transport, but microtextures developed on quartz sand survive longer distances of transport, and record high-stress fractures consistent with glaciation. Proglacial fluvial systems can be difficult to distinguish from non-glacial systems, but a preponderance of facies signaling abundant water and sediment, such as hyperconcentrated flood flows, non-cohesive fine-grained debris flows, and/or large-scale and coarse-grained cross-stratification are consistent with proglacial conditions, especially in combination with evidence for cold temperatures, such as rip-up clasts composed of noncohesive sediment, indicating frozen conditions, and/or evidence for a predominance of physical over chemical weathering. Other indicators of freezing (periglacial) conditions include frozen-ground phenomena such as fossil ice wedges and ice crystals. Voluminous loess deposits and eolian-marine silt/mudstone characterized by silt modes, a significant proportion of primary silicate minerals, and a provenance from non-silt precursors can indicate the operation of glacial grinding, even though such deposits may be far removed from the site(s) of glaciation. Ultimately, in the absence of unambiguous ice-contact indicators, inferences of glaciation must be grounded on an array of observations that together record abundant meltwater, temperatures capable of sustaining glaciation, and glacial weathering (e.g., glacial grinding). If such arguments are viable, they can bolster the accuracy of past climate models, and guide climate modelers in assessing the types of forcings that could enable glaciation at elevation, as well as the extent to which (extensive) upland glaciation might have influenced global climate.Ye

    Atmospheric dust flux in northeastern Gondwana during the peak of the late Paleozoic ice age

    Get PDF
    The silicate mineral fraction of shallow marine carbonates archives dust contributions to the Central Persian Terranes along the northeastern margin of Gondwana (∼30°S paleolatitude), enabling reconstruction of atmospheric dust loading and circulation for intervals of the late Paleozoic ice age. The Central Persian Terranes hosted cyclic deposition of warm water carbonates from middle Pennsylvanian to earliest Permian time, and our data set includes two ∼28 m sections from the Moscovian and Asselian sampled at 20 cm intervals. Bounding surfaces between successive cycles (high-frequency sequences) are recognized by either abrupt basinward shifts in facies or subtle exposure features; these high-frequency sequences range from 1 m to 5 m thick and are interpreted to record glacioeustatic variations. Time series analysis of the dust fraction through the studied interval supports the hypothesis of orbital forcing for the dust signal. The stratigraphic pattern of the dust flux indicates minimal flux during interglacial highstands (0.19–0.27 g/cm2/kyr) and peak flux during glacial lowstands (3.77–4.57 g/cm2/kyr) after accounting for hiatal time at sequence boundaries. Grain size analysis of the dust for all samples (n = 230) reveals modal sizes (volume-based) of 1–15 µm through the Moscovian interval and 10–75 µm through the Asselian interval. Dust deposition increased during glacial times relative to interglacial times by a factor of 16 to 19. Additionally, the Asselian interval exhibits higher dust flux overall relative to the Moscovian interval, which is interpreted to reflect the more extreme icehouse conditions of the Asselian. Variation in the dust content through the studied sections provides an indicator of temporal changes in atmospheric loading that varied at both glacial–interglacial and higher-frequency (<104 yr) scales. Geochemical data reveal that the Arabian–Nubian Shield and southwestern Pangaea (South America) are the most likely sources of dust deposition in the Central Persian Terranes, with sources shifting during different phases. Increased dust flux during glacials likely reflects multiple factors, including enhanced aridity in the source region, exposure of shelf regions, and potential changes in winds. However, the discrepancy in model reconstructions of the amplitude of glacial–interglacial dust variations indicates that increased production of dust sourced by dynamic glaciation played a large role in enhancing dust flux during glacial phases.Research that contributed to the concepts presented here was funded by the National Science Foundation (EAR-1338331 and EAR-1337463 to G.S. Soreghan, EAR-1543518 to L.A. Hinnov, EAR-1337463 to N.G. Heavens, and EAR-1338440 to the University of Michigan). Supplementary funding was provided by the Eberly Family Chair (University of Oklahoma).Ye

    Coal-derived rates of atmospheric dust deposition during the Permian

    Get PDF
    Despite widespread evidence for atmospheric dust deposition prior to the Quaternary, quantitative rate data remains sparse. As dust influences both climate and biological productivity, the absence of quantitative dust data limits the comprehensiveness of models of pre-Quaternary climate and biogeochemical cycles. Here, we propose that inorganic matter contained in coal primarily records atmospheric dust deposition. To test this, we use the average concentration of inorganic matter in Permian coal to map global patterns and deposition rates of atmospheric dust over Pangea. The dust accumulation rate is calculated assuming Permian peat carbon accumulation rates in temperate climates were similar to Holocene rates and accounting for the loss of carbon during coalification. Coal-derived rates vary from 0.02 to 25 g m− 2 year− 1, values that fall within the present-day global range. A well-constrained East–West pattern of dust deposition corresponding to expected palaeoclimate gradients extends across Gondwana with maximum dust deposition rates occurring close to arid regions. A similar pattern is partially defined over the northern hemisphere. Patterns are consistent with the presence of two large global dust plumes centred on the tropics. The spatial patterns of dust deposition were also compared to dust cycle simulations for the Permian made with the Community Climate System Model version 3 (CCSM3). Key differences between the simulations and the coal data are the lack of evidence for an Antarctic dust source, higher than expected dust deposition over N and S China and greater dust deposition rates over Western Gondwana. This new coal-based dust accumulation rate data expands the pre-Neogene quantitative record of atmospheric dust and can help to inform and validate models of global circulation and biogeochemical cycles over the past 350 Myr

    New Neutrino Mass Bounds from Sloan Digital Sky Survey III Data Release 8 Photometric Luminous Galaxies

    Full text link
    We present neutrino mass bounds using 900,000 luminous galaxies with photometric redshifts measured from Sloan Digital Sky Survey III Data Release Eight (SDSS DR8). The galaxies have photometric redshifts between z=0.45z = 0.45 and z=0.65z = 0.65, and cover 10,000 square degrees and thus probe a volume of 3h−3h^{-3}Gpc3^3, enabling tight constraints to be derived on the amount of dark matter in the form of massive neutrinos. A new bound on the sum of neutrino masses ∑mν<0.26\sum m_\nu < 0.26 eV, at 95% confidence level (CL), is obtained after combining our sample of galaxies, which we call "CMASS", with WMAP 7 year Cosmic Microwave Background (CMB) data and the most recent measurement of the Hubble parameter from the Hubble Space Telescope (HST). This constraint is obtained with a conservative multipole range choice of 30<ℓ<20030 < \ell < 200 in order to minimize non-linearities, and a free bias parameter in each of the four redshift bins. We study the impact of assuming this linear galaxy bias model using mock catalogs, and find that this model causes a small (∼1−1.5σ\sim 1-1.5 \sigma) bias in ΩDMh2\Omega_{\rm DM} h^2. For this reason, we also quote neutrino bounds based on a conservative galaxy bias model containing additional, shot noise-like free parameters. In this conservative case, the bounds are significantly weakened, e.g. ∑mν<0.36\sum m_\nu < 0.36 eV (95% confidence level) for WMAP+HST+CMASS (ℓmax=200\ell_{\rm max}=200). We also study the dependence of the neutrino bound on multipole range (ℓmax=150\ell_{\rm max}=150 vs ℓmax=200\ell_{\rm max}=200) and on which combination of data sets is included as a prior. The addition of supernova and/or Baryon Acoustic Oscillation data does not significantly improve the neutrino mass bound once the HST prior is included. [abridged]Comment: 14 pages, 8 figures, 1 tabl

    Extensive MRO CRISM Observations of 1.27 micron O2 Airglow in Mars Polar Night and Their Comparison to MRO MCS Temperature Profiles and LMD GCM Simulations

    Get PDF
    The Martian polar night distribution of 1.27 micron (0-0) band emission from O2 singlet delta [O2(1Delta(sub g))] is determined from an extensive set of Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectral Mapping (CRISM) limb scans observed over a wide range of Mars seasons, high latitudes, local times, and longitudes between 2009 and 2011. This polar nightglow reflects meridional transport and winter polar descent of atomic oxygen produced from CO2 photodissociation. A distinct peak in 1.27 micron nightglow appears prominently over 70-90NS latitudes at 40-60 km altitudes, as retrieved for over 100 vertical profiles of O2(1Delta(sub g)) 1.27 micron volume emission rates (VER). We also present the first detection of much (x80+/-20) weaker 1.58 micron (0-1) band emission from Mars O2(1Delta(sub g)). Co-located polar night CRISM O2(1Delta(sub g)) and Mars Climate Sounder (MCS) (McCleese et al., 2008) temperature profiles are compared to the same profiles as simulated by the Laboratoire de Mtorologie Dynamique (LMD) general circulation/photochemical model (e.g., Lefvre et al., 2004). Both standard and interactive aerosol LMD simulations (Madeleine et al., 2011a) underproduce CRISM O2(1Delta(sub g)) total emission rates by 40%, due to inadequate transport of atomic oxygen to the winter polar emission regions. Incorporation of interactive cloud radiative forcing on the global circulation leads to distinct but insufficient improvements in modeled polar O2(1Delta(sub g)) and temperatures. The observed and modeled anti-correlations between temperatures and 1.27 mm band VER reflect the temperature dependence of the rate coefficient for O2(1Delta(sub g)) formation, as provided in Roble (1995)
    corecore