105 research outputs found

    Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    Get PDF
    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets

    Can Acute Galactic Cosmic Radiation-Induced Bone Loss Be Mitigated By Dietary Modulation Of Inflammatory Cytokines?

    Get PDF
    The space environment includes weightlessness and galactic cosmic radiation (GCR), both of which can have a negative impact on bone parameters. In particular, acute exposures to space-relevant doses (2 Gy or less) of simulated GCR lead to a rapid acceleration of bone resorption activity and suppression of bone forming osteoblasts, resulting in diminished bone mineral density (BMD), strength and altered microarchitecture. A key mechanism driving these changes may be a radiation-induced increase in pro-inflammatory cytokines, such as TNF-α. Consuming a diet rich in omega-3 fatty acids has been associated with attenuated reductions in bone parameters in astronauts, mice and elderly humans with corresponding reductions in circulating inflammatory cytokines. PURPOSE: To test the hypothesis thata diet high in omega-3 fatty acids will mitigate radiation-induced bone loss and reduce inflammatory cytokines in bone osteocytes and serum. METHODS: Adult (30- to 50-week-old) female Lgr5-EGFP C57BL/6 mice (n=4-6 per group) were acclimated to a corn oil/cellulose (COC) or fish oil/pectin (FOP) diet for 3 weeks. Animals were subsequently randomized to total body low dose high-energy radiation (0.1, 0.25, 0.5 Gy of 1000 MeV/n 56Fe at 25 cGy/min at Brookhaven National Lab) or non-irradiated control (sham) and euthanized 8 weeks later. MicroCT (ScanCo, Switzerland) analyses were performed to assess bone geometry and microarchitecture at the mid-shaft and distal end of the femur. Significance was assessed using an αof 0.10. RESULTS:There was a significant main effect of diet on mid-shaft femur periosteal diameter (Peri.Dm) (p=0.001) and endocortical diameter (Endo. Dm.) (p\u3c0.001). The FOP diet led to larger Peri.Dm. (p\u3c0.051 for all) and Endo.Dm. (p\u3c0.41 for all) than did the COC diet at all doses. We could not detect an impact of 56Fe on cortical area or cancellous bone volume at the distal femur. Irradiation with 0.25 and 0.5 Gy in the FOP mice showed significant increases in distal femur volumetric BMD (p=0.014, p=0.063) and trabecular thickness (p=0.058, p=0.028), as compared with sham FOP mice. CONCLUSION: Though we did not detect a significant impact of radiation on bone parameters, these early data analyses suggest some modest benefits from a diet high in omega-3 fatty acids on cortical and cancellous bone parameters

    Prospective SPECT-CT organ dosimetry-driven radiation-absorbed dose escalation using the In-111 (111In)/yttrium 90 (90Y) ibritumomab tiuxetan (Zevalin Âź) theranostic pair in patients with lymphoma at myeloablative dose levels

    Get PDF
    PURPOSE: We prospectively evaluated the feasibility of SPECT-CT/planar organ dosimetry-based radiation dose escalation radioimmunotherapy in patients with recurrent non-Hodgkin\u27s lymphoma using the theranostic pair of METHODS: 24 patients with CD20-positive relapsed or refractory rituximab-sensitive, low-grade, mantle cell, or diffuse large-cell NHL, with normal organ function, platelet counts \u3e 75,000/mm RESULTS: Patient-specific hybrid SPECT/CT + planar organ dosimetry was feasible in all 18 cases and used to determine the patient-specific therapeutic dose and guide dose escalation (26.8 ± 7.3 MBq/kg (mean), 26.3 MBq/kg (median) of CONCLUSIONS: Patient-specific outpatien

    Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ginger (<it>Zingiber officinale </it>Rosc) is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-ÎșB. NF-ÎșB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells <it>in vitro</it>.</p> <p>Methods</p> <p>The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-ÎșB and and production of VEGF and IL-8 was determined in the presence or absence of ginger.</p> <p>Results</p> <p>Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that <it>in vitro</it>, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8.</p> <p>Conclusion</p> <p>Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.</p

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Protecting children in low-income and middle-income countries from COVID-19

    Get PDF
    CITATION: Ahmed, S. et al. 2020. Protecting children in low-income and middle-income countries from COVID-19. BMJ Global Health, 5:e002844. doi:10.1136/bmjgh-2020-002844.The original publication is available at https://gh.bmj.comA saving grace of the COVID-19 pandemic in high-income and upper middle-income countries has been the relative sparing of children. As the disease spreads across low-income and middle-income countries (LMICs), long-standing system vulnerabilities may tragically manifest, and we worry that children will be increasingly impacted, both directly and indirectly. Drawing on our shared child pneumonia experience globally, we highlight these potential impacts on children in LMICs and propose actions for a collective response.https://gh.bmj.com/content/5/5/e002844.abstractPublisher's versio

    Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.

    Get PDF
    We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease

    Precision mouse models with expanded tropism for human pathogens

    Get PDF
    A major limitation of current humanized mouse models is that they primarily enable the analysis of human-specific pathogens that infect hematopoietic cells. However, most human pathogens target other cell types, including epithelial, endothelial and mesenchymal cells. Here, we show that implantation of human lung tissue, which contains up to 40 cell types, including nonhematopoietic cells, into immunodeficient mice (lung-only mice) resulted in the development of a highly vascularized lung implant. We demonstrate that emerging and clinically relevant human pathogens such as Middle East respiratory syndrome coronavirus, Zika virus, respiratory syncytial virus and cytomegalovirus replicate in vivo in these lung implants. When incorporated into bone marrow/liver/thymus humanized mice, lung implants are repopulated with autologous human hematopoietic cells. We show robust antigen-specific humoral and T-cell responses following cytomegalovirus infection that control virus replication. Lung-only mice and bone marrow/liver/thymus-lung humanized mice substantially increase the number of human pathogens that can be studied in vivo, facilitating the in vivo testing of therapeutics

    2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore