4,321 research outputs found

    Space Velocities of L- and T-type Dwarfs

    Get PDF
    (Abridged) We have obtained radial velocities of a sample of 18 ultracool dwarfs (M6.5-T8) using high-resolution, near-infrared spectra obtained with NIRSPEC and the Keck II telescope. We have confirmed that the radial velocity of Gl 570 D is coincident with that of the K-type primary star Gl 570 A, thus providing additional support for their true companionship. The presence of planetary-mass companions around 2MASS J05591914-1404488 (T4.5V) has been analyzed using five NIRSPEC radial velocity measurements obtained over a period of 4.37 yr. We have computed UVW space motions for a total of 21 L and T dwarfs within 20 pc of the Sun. This population shows UVW velocities that nicely overlap the typical kinematics of solar to M-type stars within the same spatial volume. However, the mean Galactic (44.2 km/s) and tangential (36.5 km/s) velocities of the L and T dwarfs appear to be smaller than those of G to M stars. A significant fraction (~40%) of the L and T dwarfs lies near the Hyades moving group (0.4-2 Gyr), which contrasts with the 10-12% found for earlier-type stellar neighbors. Additionally, the distributions of all three UVW components (sigma_{UVW} = 30.2, 16.5, 15.8 km/s) and the distributions of the total Galactic (sigma_{v_tot} = 19.1 km/s) and tangential (sigma_{v_t} = 17.6 km/s) velocities derived for the L and T dwarf sample are narrower than those measured for nearby G, K, and M-type stars, but similar to the dispersions obtained for F stars. This suggests that, in the solar neighborhood, the L- and T-type ultracool dwarfs in our sample (including brown dwarfs) is kinematically younger than solar-type to early M stars with likely ages in the interval 0.5-4 Gyr.Comment: Accepted for publication in Ap

    Revisiting the transits of CoRoT-7b at a lower activity level

    Get PDF
    CoRoT-7b, the first super-Earth with measured radius discovered, has opened the new field of rocky exoplanets characterisation. To better understand this interesting system, new observations were taken with the CoRoT satellite. During this run 90 new transits were obtained in the imagette mode. These were analysed together with the previous 151 transits obtained in the discovery run and HARPS radial velocity observations to derive accurate system parameters. A difference is found in the posterior probability distribution of the transit parameters between the previous CoRoT run (LRa01) and the new run (LRa06). We propose this is due to an extra noise component in the previous CoRoT run suspected to be transit spot occultation events. These lead to the mean transit shape becoming V-shaped. We show that the extra noise component is dominant at low stellar flux levels and reject these transits in the final analysis. We obtained a planetary radius, Rp=1.585±0.064RR_p= 1.585\pm0.064\,R_{\oplus}, in agreement with previous estimates. Combining the planetary radius with the new mass estimates results in a planetary density of 1.19±0.27ρ 1.19 \pm 0.27\, \rho_{\oplus} which is consistent with a rocky composition. The CoRoT-7 system remains an excellent test bed for the effects of activity in the derivation of planetary parameters in the shallow transit regime.Comment: 13 pages, 13 figures, accepted to A&

    Corotation: its influence on the chemical abundance pattern of the Galaxy

    Full text link
    A simple theory for the chemical enrichment of the Galaxy which takes into account the effects of spiral arms on heavy elements output was developed. In the framework of the model with the corotation close to the position of the Sun in the Galaxy the observed abundance features are explained.Comment: LaTeX, 6 pages, 5 jpg figures, uses aastex.sty, submitted to ApJ Let

    Stellar surface magneto-convection as a source of astrophysical noise II. Center-to-limb parameterisation of absorption line profiles and comparison to observations

    Get PDF
    Manifestations of stellar activity (such as star-spots, plage/faculae, and convective flows) are well known to induce spectroscopic signals often referred to as astrophysical noise by exoplanet hunters. For example, setting an ultimate goal of detecting true Earth-analogs demands reaching radial velocity (RV) precisions of ~9 cm/s. While this is becoming technically feasible with the latest generation of highly stabilised spectrographs, it is astrophysical noise that sets the true fundamental barrier on attainable RV precisions. In this paper we parameterise the impact of solar surface magneto-convection on absorption line profiles, and extend the analysis from the solar disc centre (Paper I) to the solar limb. Off disc-centre, the plasma flows orthogonal to the granule tops begin to lie along the line-of-sight and those parallel to the granule tops are no longer completely aligned with the observer. Moreover, the granulation is corrugated and the granules can block other granules, as well as the intergranular lane components. Overall, the visible plasma flows and geometry of the corrugated surface significantly impact the resultant line profiles and induce centre-to-limb variations in shape and net position. We detail these herein, and compare to various solar observations. We find our granulation parameterisation can recreate realistic line profiles and induced radial velocity shifts, across the stellar disc, indicative of both those found in computationally heavy radiative 3D magnetohydrodynamical simulations and empirical solar observations.Comment: 17 pages, 14 figures, accepted to Ap

    The ATLAS SCT grounding and shielding concept and implementation

    Get PDF
    This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms. In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency. This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper

    IGFBP-1 in Cardiometabolic Pathophysiology—Insights From Loss-of-Function and Gain-of-Function Studies in Male Mice

    Get PDF
    We have previously reported that overexpression of human insulin-like growth factor binding protein (IGFBP)-1 in mice leads to vascular insulin sensitization, increased nitric oxide bioavailability, reduced atherosclerosis, and enhanced vascular repair, and in the setting of obesity improves glucose tolerance. Human studies suggest that low levels of IGFBP-1 are permissive for the development of diabetes and cardiovascular disease. Here we seek to determine whether loss of IGFBP-1 plays a causal role in the predisposition to cardiometabolic disease. Metabolic phenotyping was performed in transgenic mice with homozygous knockout of IGFBP-1. This included glucose, insulin, and insulin-like growth factor I tolerance testing under normal diet and high-fat feeding conditions. Vascular phenotyping was then performed in the same mice using vasomotor aortic ring studies, flow cytometry, vascular wire injury, and angiogenesis assays. These were complemented with vascular phenotyping of IGFBP-1 overexpressing mice. Metabolic phenotype was similar in IGFBP-1 knockout and wild-type mice subjected to obesity. Deletion of IGFBP-1 inhibited endothelial regeneration following injury, suggesting that IGFBP-1 is required for effective vascular repair. Developmental angiogenesis was unaltered by deletion or overexpression of IGFBP-1. Recovery of perfusion following hind limb ischemia was unchanged in mice lacking or overexpressing IGFBP-1; however, overexpression of IGFBP-1 stimulated hindlimb perfusion and angiogenesis in insulin-resistant mice. These findings provide new insights into the role of IGFBP-1 in metabolic and vascular pathophysiology. Irrespective of whether loss of IGFBP-1 plays a causal role in the development of cardiometabolic disorders, increasing IGFBP-1 levels appears effective in promoting neovascularization in response to ischemia

    Radial Mixing in Galactic Disks: The Effects of Disk Structure and Satellite Bombardment

    Full text link
    We use a suite of numerical simulations to investigate the mechanisms and effects of radial migration of stars in disk galaxies like the Milky Way (MW). An isolated, collisionless stellar disk with a MW-like scale-height shows only the radial "blurring" expected from epicyclic orbits. Reducing the disk thickness or adding gas to the disk substantially increases the level of radial migration, induced by interaction with transient spiral arms and/or a central bar. We also examine collisionless disks subjected to gravitational perturbations from a cosmologically motivated satellite accretion history. In the perturbed disk that best reproduces the observed properties of the MW, 20% of stars that end up in the solar annulus 7 kpc < R < 9 kpc started at R < 6 kpc, and 7% started at R > 10 kpc. This level of migration would add considerable dispersion to the age-metallicity relation of solar neighborhood stars. In the isolated disk models, the probability of migration traces the disk's radial mass profile, but in perturbed disks migration occurs preferentially at large radii, where the disk is more weakly bound. The orbital dynamics of migrating particles are also different in isolated and perturbed disks: satellite perturbations drive particles to lower angular momentum for a given change in radius. Thus, satellite perturbations appear to be a distinct mechanism for inducing radial migration, which can operate in concert with migration induced by bars and spiral structure. We investigate correlations between changes in radius and changes in orbital circularity or vertical energy, identifying signatures that might be used to test models and distinguish radial migration mechanisms in chemo-dynamical surveys of the MW disk.Comment: Full resolution paper available at http://www.astronomy.ohio-state.edu/~bird/bkw11_fullres.pdf . 13 pages, 12 figures; emulate MNRAS format. Accepted for publication in MNRA
    corecore