59 research outputs found

    Treatment of Wastewater Using Reverse Osmosis for Irrigation Purposes

    Get PDF
    This work investigates the performance of reverse osmosis (RO) for the reclamation of treated sewage effluent (TSE) to be used as irrigation water for food crops. The feed water used in this study was a real sample of ultra-filtered tertiary treated sewage effluent (TSE). Reverse osmosis (RO) was evaluated using the following experimental conditions applied pressure (10 - 20) bar, flow rate 3.5 LPM and (BW30LE) membrane. The performance of RO was evaluated according to the water flux and rejection of dissolved solids. The final water quality was compared with irrigation water standards. The results reported in this study show that reverse osmosis (RO) is capable of reclaiming treated sewage effluent (TSE) to be used as irrigation water for food crops. The maximum average flux was 77.7 LMH achieved using a feed pressure of 16 bar. The permeate water generated using RO had high quality which met the irrigation standards for food crops.This research is made possible by graduate sponsorship research award (GSRA6-1- 0509-19021) from Qatar National Research Fund (QNRF). The statements made herein are solely the responsibility of the authors

    Impact of Draw Solution Concentration on Forward Osmosis Process: A Simulation Study

    Get PDF
    In this study, a simulation model was used to evaluate the performance of forward osmosis process. A solution of low salinity was used as the feed solution in forward osmosis to dilute saline solution (i.e. draw solution) for further desalination. The paper evaluated the effect of the draw solution concentration on the recovery rate and energy consumption in forward osmosis. It was found that increasing the concentration of draw solution increased the recovery rate. Also, while increasing concentration of draw solution, energy consumption decreased. The maximum recovery rate of 33% was achieved using (0.5M NaCl) draw solution and a flow rate of 40000 m3/day. The specific power consumption was 0.21 kWh/m3.This research is made possible by Graduate Sponsorship Research Award (GSRA6-1- 0509-19021) from Qatar National Research Fund (QNRF). The statements made herein are solely the responsibility of the authors

    An enhanced electrocoagulation process for the removal of fe and mn from municipal wastewater using dielectrophoresis (Dep)

    Get PDF
    In this study the removal of Fe and Mn from primary treated municipal wastewater using a new electrode configuration in electrocoagulation was evaluated. The used electrode configuration induced a dielectrophoretic (DEP) force in the electrocoagulation process. The impact of the electrolysis time, electrodes spacing and applied current on the removal of Fe and Mn was evaluated. The maximum removal percentages of Fe and Mn were obtained using an electrolysis time of 60 min, an electrode spacing of 0.5 cm and an applied current of 800 mA. Under these operating conditions and using the new electrodes configuration, the Fe and Mn removals were 96.8% and 66%, respectively. The main advantage of using the DEP-induced electrode configuration was the minimal consumption of the electrodes. The new electrode configuration showed 42% less aluminum content in the reactor compared to the aluminum electrodes with no DEP effect. The energy consumption at the selected operation conditions was 4.88 kWh/m3. The experimental results were comparable with the simulation results achieved by the COMSOL software. 2021 by the authors. Licensee MDPI, Basel, Switzerland.Acknowledgments: This research was made possible by Awards (GSRA5-2-0525-18072) and (GSRA6-1-0509-19021) from Qatar National Research Fund (a member of Qatar Foundation). The authors would like to thank the Central Laboratories Unit at Qatar University for the measurement of heavy metal. The authors also wish to thank Qatar Works Authority (Ashghal) for the supply of wastewater samples.Scopu

    Fouling mitigation strategies for different foulants in membrane distillation

    Get PDF
    Providing clean water to a rapidly growing population is an issue that is currently getting lots of attention to offer a sustainable solution for water scarcity. Membrane distillation (MD) is one of the latest technologies that provides great potential in water treatment. Even though there is a tremendous amount of research done during the past two decades on membrane distillation, the long-term use of this process is still restricted by membrane fouling. Membrane Fouling can be defined as the accumulation of various materials in the pores or surface of the membrane that affect permeate's quantity and quality. This review highlights the recent observations on various foulants in MD process. Moreover, different fouling mechanisms of inorganic fouling, organic fouling, biological fouling, and colloidal fouling were investigated for better understanding and prevention of membrane fouling. In order to achieve a sustainable MD process, various techniques to mitigate fouling were discussed comprehensively including pre-treatment processes and cleaning methods. The benefits and disadvantages of these approaches have been investigated and reviewed in order to provide an overall understanding of fouling minimization in membrane distillation process. Fouling mitigation strategies have been suggested for different foulants in membrane distillation

    Poly (amido amine) dendrimer based membranes for wastewater treatment - A critical review

    Get PDF
    Membrane based wastewater treatment technologies in which polymeric membranes are most commonly used have been extensively applied in water/wastewater treatment to help address the issue of water shortage through water/wastewater reclamation and reuse. However, polymeric membranes due to their hydrophobic nature are subject damage caused by accumulation of organic/inorganic fouling during filtration processes, which results in a number of issues such as low water flux and low pollutant rejection. Several strategies have been considered to address these challenges and effectively improve the membrane performances. Alteration of membrane properties strategy using suitable nanofillers such us poly (amido amine) or PAMAM has been largely studied. Herein, research efforts regarding the synthesis and properties of PAMAM along with the synthesis of PAMAM multifunctional nanocomposites were concisely reviewed for the first time. Membrane performance enhancement by incorporation of PAMAM were reviewed and discussed. Results and contributions achieved in the improvement of PAMAM incorporated membranes for the treatment of different types of wastewaters has been reviewed and summarized. Furthermore, perspectives on the current challenges and future research needs in the development and application of PAMAM incorporated polymeric membranes to benefit from the potentials that offer these promising new membrane nanofiller were discussed 2023 The Author(s)This research is made possible by graduate sponsorship research award (GSRA7-1-0510-20046) from Qatar National Research Fund (QNRF). The publication of this article was funded by Qatar National Library. The statements made herein are solely the responsibility of the authors Qatar National Library for funding the Open Access Publication.Scopu

    A novel electrocoagulation electrode configuration for the removal of total organic carbon from primary treated municipal wastewater

    Get PDF
    In this paper, the removal of total organic carbon (TOC) from a primary treated municipal wastewater using a new electrode configuration in electrocoagulation was evaluated. The used electrode configuration induces a dielectrophoretic (DEP) force by using an asymmetrical aluminum electrode with an alternating current power supply. The impact of applied current, electrolysis time, and interelectrode distance on the removal efficiency of TOC were evaluated. The experimental results showed that the maximum removal efficiency of TOC was obtained at 30 min electrolysis time, 600 mA applied current, and 0.5 cm interelectrode distance. Under these operating conditions, the TOC removal was 87.7% compared to 80.5% using symmetrical aluminum electrodes with no DEP effect. The energy consumption at the selected operating conditions was 3.92 kWh/m3. The experimental results were comparable with the simulation results done by COMSOL Multiphysics software. 2020, The Author(s).Open Access funding provided by the Qatar National Library. The authors would like to thank Qatar University for the provided financial support. The authors would also like to thank the central Laboratories Unit at Qatar University for TOC analysis. In addition, the authors wish to thank Qatar Foundation for the financial support provided to one of the co-authors through a graduate sponsorship research award (GSRA 6-1-0509-19021).Scopu

    Organic fouling in forward osmosis: A comprehensive review

    Get PDF
    Organic fouling in the forward osmosis process is complex and influenced by different parameters in the forward osmosis such as type of feed and draw solution, operating conditions, and type of membrane. In this article, we reviewed organic fouling in the forward osmosis by focusing on wastewater treatment applications. Model organic foulants used in the forward osmosis literature were highlighted, which were followed by the characteristics of organic foulants when real wastewater was used as feed solution. The various physical and chemical cleaning protocols for the organic fouled membrane are also discussed. The study also highlighted the effective pre-treatment strategies that are effective in reducing the impact of organic fouling on the forward osmosis (FO) membrane. The efficiency of cleaning methods for the removal of organic fouling in the FO process was investigated, including recommendations on future cleaning technologies such as Ultraviolet and Ultrasound. Generally, a combination of physical and chemical cleaning is the best for restoring the water flux in the FO process. 2020 by the authors.This research was funded by an NPRP grant (NPRP10-0117-170176) from the Qatar National Research Fund (a member of Qatar Foundation). This is the format recommended by the funding organization. Candidate S.Y. would like to acknowledge scholarship support from the University of Technology Sydney under UTS President's Scholarship and International Research Scholarship (IRP). In addition, this publication was possible by an NPRP grant (NPRP10-0117-170176) from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.Scopu

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Predicting the performance of multi-media filters using artificial neural networks

    No full text
    The impact of flow rate and turbidity on the performance of multi-media filtration has been studied using an artificial neural network (ANN) based model. The ANN model was developed and tested based on experimental data collected from a pilot scale multi-media filter system. Several ANN models were tested, and the best results with the lowest errors were achieved with two hidden layers and five neurons per layer. To examine the significance and efficiency of the developed ANN model it was compared with a linear regression model. The R2 values for the actual versus predicted results were 0.9736 and 0.9617 for the ANN model and the linear regression model, respectively. The ANN model showed an R-squared value increase of 1.22% when compared to the linear regression model. In addition, the ANN model gave a significant reduction of 91.5% and 97.9% in the mean absolute error and the root mean square error, respectively when compared to the linear regression model. The proposed model has proven to give plausible results to model complex relationships that can be used in real life water treatment plants.This publication was made possible by UREP award [UREP 15 - 047 - 2 - 015] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
    • …
    corecore