15 research outputs found

    Mapping paleoflooded areas on evaporite playa deposits over sandy sediments (Tablas de Daimiel, Spain) using hyperspectral DAIS 7915 and ROSIS spectrometer data

    Get PDF
    Open-system lakes developing marshes are sensitive environments to climate changes. Mineralogical climate markers such as gypsum and dolomitized carbonate are spatialy traced using hyperspectral imagery. Climate-dependent saline soils, carbonate, organic matter and iron oxide crusts have been mapped along different stages of flooding and emersion in the past 2000 years using DAIS and ROSIS spectrometer data. Spectral behaviour interacting and masking from various mineralogical components are described on laboratory spectra. Influence of landuse on the spatial spectral behaviour of paleoenvironments is discussed. A general outline of the past pools is drawn on the area surrounding the actual marsh, providing priceless data to use in further paleoclimate limnological research and in the development of new techniques for that research

    Mapping of semi-arid iron bearing red sands on emerged areas around lake marshes (Tablas de Daimiel, Spain) using hyperspectral DAIS 7915 spectrometer data

    Get PDF
    Wetlands are particularly sensitive environments receiving attention from the natural sciences community due to their wealth of both flora and fauna, and often considered as natural parks. In the Tablas de Daimiel (La Mancha, Central Spain), Digital Airborne Imaging Spectrometer data (DAIS 7915) have been analyzed to map geological processes on areas around the receding wetland which have never been flooded by water in the past. Sediments permanently exposed to the atmosphere dehydrate and oxide, developing different mineralogical associations arranged on planation surfaces. Such planation surfaces are key in the geological knowledge of recent climate change and landscape evolution. Progressive iron oxide/hydroxide rate and decarbonation can be spectrally followed on the Holocene sands framing the current marshy area. Such mineralogical changes are geologically registered on flat surfaces at different heights over the receding shore of the paleolake. Interacting erosion and sedimentation processes are responsible for the development of the flat morphological surfaces with increasing dryness. Maps are built for four different morphological units consisting of planation surfaces following chronologically the receding marsh during the last 2000 years before the present. Interactive spectral responses of mineralogical associations are described on the imagery, field and laboratory spectra

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    Mapping of semi-arid iron bearing red sands on emerged areas around lake marshes (Tablas de Daimiel, Spain) using hyperspectral DAIS 7915 spectrometer data

    No full text
    Wetlands are particularly sensitive environments receiving attention from the natural sciences community due to their wealth of both flora and fauna, and often considered as natural parks. In the Tablas de Daimiel (La Mancha, Central Spain), Digital Airborne Imaging Spectrometer data (DAIS 7915) have been analyzed to map geological processes on areas around the receding wetland which have never been flooded by water in the past. Sediments permanently exposed to the atmosphere dehydrate and oxide, developing different mineralogical associations arranged on planation surfaces. Such planation surfaces are key in the geological knowledge of recent climate change and landscape evolution. Progressive iron oxide/hydroxide rate and decarbonation can be spectrally followed on the Holocene sands framing the current marshy area. Such mineralogical changes are geologically registered on flat surfaces at different heights over the receding shore of the paleolake. Interacting erosion and sedimentation processes are responsible for the development of the flat morphological surfaces with increasing dryness. Maps are built for four different morphological units consisting of planation surfaces following chronologically the receding marsh during the last 2000 years before the present. Interactive spectral responses of mineralogical associations are described on the imagery, field and laboratory spectra
    corecore