11 research outputs found

    Differential metabolomic signatures of declining renal function in Types 1 and 2 diabetes

    Get PDF
    Publisher Copyright: © 2020 The Author(s) 2020. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.Background: Chronic kidney disease (CKD) shows different clinical features in Types1 (T1D) and 2 diabetes (T2D). Metabolomics have recently provided useful contribution to the identification of biomarkers of CKD progression in either form of the disease. However, no studies have so far compared plasma metabolomics between T1D and T2D in order to identify differential signatures of progression of estimated glomerular filtration rate (eGFR) decline. Methods: We used two large cohorts of T1D (from Finland) and T2D (from Italy) patients followed up to 7 and 3 years, respectively. In both groups, progression was defined as the top quartile of yearly decline in eGFR. Pooled data from the two groups were analysed by univariate and bivariate random forest (RF), and confirmed by bivariate partial least squares (PLS) analysis, the response variables being type of diabetes and eGFR progression. Results: In progressors, yearly eGFR loss was significantly larger in T2D [-5.3 (3.0), median (interquartile range)mL/min/1.73 m2/year] than T1D [-3.7 (3.1) mL/min/1.73 m2/year; P = 0.018]. Out of several hundreds, bivariate RF extracted 22 metabolites associated with diabetes type (all higher in T1D than T2D except for 5-methylthioadenosine, pyruvate and β-hydroxypyruvate) and 13 molecules associated with eGFR progression (all higher in progressors than non-progressors except for sphyngomyelin). Three of the selected metabolites (histidylphenylalanine, leucylphenylalanine, tryptophylasparagine) showed a significant interaction between disease type and progression. Only eight metabolites were common to both bivariate RF and PLS. Conclusions: Identification of metabolomic signatures of CKD progression is partially dependent on the statistical model. Dual analysis identified molecules specifically associated with progressive renal impairment in both T1D and T2D.Peer reviewe

    Data management and data analysis techniques in pharmacoepidemiological studies using a pre-planned multi-database approach : a systematic literature review

    Get PDF
    PurposeTo identify pharmacoepidemiological multi-database studies and to describe data management and data analysis techniques used for combining data. MethodsSystematic literature searches were conducted in PubMed and Embase complemented by a manual literature search. We included pharmacoepidemiological multi-database studies published from 2007 onwards that combined data for a pre-planned common analysis or quantitative synthesis. Information was retrieved about study characteristics, methods used for individual-level analyses and meta-analyses, data management and motivations for performing the study. ResultsWe found 3083 articles by the systematic searches and an additional 176 by the manual search. After full-text screening of 75 articles, 22 were selected for final inclusion. The number of databases used per study ranged from 2 to 17 (median=4.0). Most studies used a cohort design (82%) instead of a case-control design (18%). Logistic regression was most often used for individual-level analyses (41%), followed by Cox regression (23%) and Poisson regression (14%). As meta-analysis method, a majority of the studies combined individual patient data (73%). Six studies performed an aggregate meta-analysis (27%), while a semi-aggregate approach was applied in three studies (14%). Information on central programming or heterogeneity assessment was missing in approximately half of the publications. Most studies were motivated by improving power (86%). ConclusionsPharmacoepidemiological multi-database studies are a well-powered strategy to address safety issues and have increased in popularity. To be able to correctly interpret the results of these studies, it is important to systematically report on database management and analysis techniques, including central programming and heterogeneity testing. (c) 2015 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons, Ltd.Peer reviewe

    Whole-exome sequencing identifies novel protein-altering variants associated with serum apolipoprotein and lipid concentrations

    Get PDF
    Background: Dyslipidemia is a major risk factor for cardiovascular disease, and diabetes impacts the lipid metabolism through multiple pathways. In addition to the standard lipid measurements, apolipoprotein concentrations provide added awareness of the burden of circulating lipoproteins. While common genetic variants modestly affect the serum lipid concentrations, rare genetic mutations can cause monogenic forms of hypercholesterolemia and other genetic disorders of lipid metabolism. We aimed to identify low-frequency protein-altering variants (PAVs) affecting lipoprotein and lipid traits. Methods: We analyzed whole-exome (WES) and whole-genome sequencing (WGS) data of 481 and 474 individuals with type 1 diabetes, respectively. The phenotypic data consisted of 79 serum lipid and apolipoprotein phenotypes obtained with clinical laboratory measurements and nuclear magnetic resonance spectroscopy. Results: The single-variant analysis identified an association between the LIPC p.Thr405Met (rs113298164) and serum apolipoprotein A1 concentrations (p=7.8×10-8). The burden of PAVs was significantly associated with lipid phenotypes in LIPC, RBM47, TRMT5, GTF3C5, MARCHF10, and RYR3 (p170,000 individuals from multiple ancestries (p=0.0013). Two PAVs in GTF3C5 were highly enriched in the Finnish population and associated with cardiovascular phenotypes in the general population. In the previously known APOB gene, we identified novel associations at two protein-truncating variants resulting in lower serum non-HDL cholesterol (p=4.8×10-4), apolipoprotein B (p=5.6×10-4), and LDL cholesterol (p=9.5×10-4) concentrations. Conclusions: We identified lipid and apolipoprotein-associated variants in the previously known LIPC and APOB genes, as well as PAVs in GTF3C5 associated with LDLC, and in RBM47 associated with apolipoprotein C-III concentrations, implicated as an independent CVD risk factor. Identification of rare loss-of-function variants has previously revealed genes that can be targeted to prevent CVD, such as the LDL cholesterol-lowering loss-of-function variants in the PCSK9 gene. Thus, this study suggests novel putative therapeutic targets for the prevention of CVD. Keywords: APOB; Apolipoprotein A1; Apolipoprotein C-III; GTF3C5; LIPC; Lipidomics; MARCHF10; RBM47; RYR3; Whole-exome sequencing.Peer reviewe

    Association of Coding Variants in Hydroxysteroid 17-beta Dehydrogenase 14 (HSD17B14) with Reduced Progression to End Stage Kidney Disease in Type 1 Diabetes

    Get PDF
    Background Rare variants ingenecodingregions likely have agreater impactondisease-relatedphenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. Methods Gene-basedexome array analyses of15,449genes infivelarge incidence cohortsof individualswith type 1diabetes andproteinuriawere analyzedfor survival time toESKD, testing the top gene in a sixth cohort (n52372/1115 events all cohorts) and replicating in two retrospective case-control studies (n51072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. Results Protein coding variants in the hydroxysteroid 17- b dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n54196; P value53.331027). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. Conclusions HSD17B14 gene ismechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.Peer reviewe

    Confirmation of GLRA3 as a susceptibility locus for albuminuria in Finnish patients with type 1 diabetes

    Get PDF
    Urinary albumin excretion is an early sign of diabetic kidney disease, affecting every third individual with diabetes. Despite substantial estimated heritability, only variants in the GLRA3 gene have been genome-wide significantly associated (p-value 7%; N = 2560, p = 1.7 x 10(-9)). Even though further studies are needed to pinpoint the causal variants, dissecting the association at the GLRA3 locus may uncover novel molecular mechanisms for diabetic albuminuria irrespective of population background.Peer reviewe

    Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes

    Get PDF
    Identification of biomarkers associated with protection from developing diabetic complications is a prerequisite for an effective prevention and treatment. The aim of the present study was to identify clinical and plasma metabolite markers associated with freedom from vascular complications in people with very long duration of type 1 diabetes (T1D). Individuals with T1D, who despite having longer than 30 years of diabetes duration never developed major macro- or microvascular complications (non-progressors; NP) were compared with those who developed vascular complications within 25 years from diabetes onset (rapid progressors; RP) in the Scandinavian PROLONG (n = 385) and DIALONG (n = 71) cohorts. The DIALONG study also included 75 healthy controls. Plasma metabolites were measured using gas and/or liquid chromatography coupled to mass spectrometry. Lower hepatic fatty liver indices were significant common feature characterized NPs in both studies. Higher insulin sensitivity and residual beta-cell function (C-peptide) were also associated with NPs in PROLONG. Protection from diabetic complications was associated with lower levels of the glycolytic metabolite pyruvate and APOCIII in PROLONG, and with lower levels of thiamine monophosphate and erythritol, a cofactor and intermediate product in the pentose phosphate pathway as well as higher phenylalanine, glycine and serine in DIALONG. Furthermore, T1D individuals showed elevated levels of picolinic acid as compared to the healthy individuals. The present findings suggest a potential beneficial shunting of glycolytic substrates towards the pentose phosphate and one carbon metabolism pathways to promote nucleotide biosynthesis in the liver. These processes might be linked to higher insulin sensitivity and lower liver fat content, and might represent a mechanism for protection from vascular complications in individuals with long-term T1D.Peer reviewe

    Association of Coding Variants in Hydroxysteroid 17-beta Dehydrogenase 14 (HSD17B14) with Reduced Progression to End Stage Kidney Disease in Type 1 Diabetes

    Get PDF
    BACKGROUND: Rare variants in gene coding regions likely have a greater impact on disease-related phenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. METHODS: Gene-based exome array analyses of 15,449 genes in five large incidence cohorts of individuals with type 1 diabetes and proteinuria were analyzed for survival time to ESKD, testing the top gene in a sixth cohort (n=2372/1115 events all cohorts) and replicating in two retrospective case-control studies (n=1072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. RESULTS: Protein coding variants in the hydroxysteroid 17-beta dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n=4196; P value=3.3 x 10(-7)). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. CONCLUSIONS: HSD17B14 gene is mechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development
    corecore