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Whole-exome sequencing identifies novel 
protein-altering variants associated with serum 
apolipoprotein and lipid concentrations
Niina Sandholm1,2,3*†  , Ronja Hotakainen1,2,3†, Jani K. Haukka1,2,3, Fanny Jansson Sigfrids1,2,3, 
Emma H. Dahlström1,2,3, Anni A. Antikainen1,2,3, Erkka Valo1,2,3, Anna Syreeni1,2,3, Elina Kilpeläinen4, 
Anastasia Kytölä4, Aarno Palotie4,5,6, Valma Harjutsalo1,2,3, Carol Forsblom1,2,3^, Per‑Henrik Groop1,2,3,7*   and on 
behalf of the FinnDiane Study Group 

Abstract 

Background: Dyslipidemia is a major risk factor for cardiovascular disease, and diabetes impacts the lipid metabolism 
through multiple pathways. In addition to the standard lipid measurements, apolipoprotein concentrations provide added 
awareness of the burden of circulating lipoproteins. While common genetic variants modestly affect the serum lipid con‑
centrations, rare genetic mutations can cause monogenic forms of hypercholesterolemia and other genetic disorders of 
lipid metabolism. We aimed to identify low‑frequency protein‑altering variants (PAVs) affecting lipoprotein and lipid traits.

Methods: We analyzed whole‑exome (WES) and whole‑genome sequencing (WGS) data of 481 and 474 individuals 
with type 1 diabetes, respectively. The phenotypic data consisted of 79 serum lipid and apolipoprotein phenotypes 
obtained with clinical laboratory measurements and nuclear magnetic resonance spectroscopy.

Results: The single‑variant analysis identified an association between the LIPC p.Thr405Met (rs113298164) and serum 
apolipoprotein A1 concentrations (p=7.8×10−8). The burden of PAVs was significantly associated with lipid pheno‑
types in LIPC, RBM47, TRMT5, GTF3C5, MARCHF10, and RYR3 (p<2.9×10−6). The RBM47 gene is required for apolipo‑
protein B post‑translational modifications, and in our data, the association between RBM47 and apolipoprotein C‑III 
concentrations was due to a rare 21 base pair p.Ala496‑Ala502 deletion; in replication, the burden of rare deleterious 
variants in RBM47 was associated with lower triglyceride concentrations in WES of >170,000 individuals from multiple 
ancestries (p=0.0013). Two PAVs in GTF3C5 were highly enriched in the Finnish population and associated with cardio‑
vascular phenotypes in the general population. In the previously known APOB gene, we identified novel associations 
at two protein‑truncating variants resulting in lower serum non‑HDL cholesterol (p=4.8×10−4), apolipoprotein B 
(p=5.6×10−4), and LDL cholesterol (p=9.5×10−4) concentrations.
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Background
Cardiovascular disease (CVD) is the leading cause of 
mortality worldwide [1]. Blood lipid concentrations are 
key CVD risk factors, and thus, lipid-lowering medication 
is an essential treatment option to prevent CVD. Diabe-
tes is another major risk factor for CVD, as over 500 mil-
lion individuals worldwide have diabetes. In particular, 
individuals with type 1 diabetes develop CVD early and 
carry a considerable CVD risk burden, with a 7.5-fold 
incidence ratio for coronary artery disease (CAD) vs. the 
general population; in the presence of other comorbidi-
ties such as diabetic kidney disease (DKD), this ratio is 
up to 27-fold [2]. This risk is not fully explained by hyper-
glycemia, but diabetic dyslipidemia is an established risk 
factor for CVD in these individuals. While hypertriglyc-
eridemia is considered the key characteristic of diabetic 
dyslipidemia [3], the incidence of CAD increases already 
below the currently recommended triglyceride cutoff of 
1.7 mmol/L, suggesting that the additional risk imposed 
by lipids is pronounced in diabetes [4].

Genetic factors explain approximately 10–54% of 
plasma lipid concentrations [5], and the largest genome-
wide association study (GWAS) on plasma lipid values 
identified nearly 400 genetic loci associated with plasma 
low-density lipoprotein cholesterol (LDLC), triglycer-
ides, total cholesterol, or high-density lipoprotein cho-
lesterol (HDLC) [6]. GWAS studies on lipids focusing 
on the exonic regions of the genome have identified low-
frequency or rare protein-altering variants (PAVs) that 
contribute to the previously observed common variant 
lipid associations or even explain most of the associa-
tions observed for those [7, 8]. Similarly, a whole-exome 
sequencing (WES) of 3994 health traits in 454,787 indi-
viduals from the UK Biobank indicated that rare vari-
ant associations were enriched in loci from GWAS, but 
were independent of common variant signals [9]. Low-
frequency PAVs can have a much stronger impact on the 
phenotype than the disease-associated common genetic 
variants, which are enriched for gene regulatory variants 
and often have moderate effect sizes [10]. It is of note 
that we have previously used WES to search for low-
frequency and rare variants for DKD in individuals with 
type 1 diabetes [11, 12]. A recent exome sequencing of 

>170,000 individuals identified rare coding variants in 35 
genes for total cholesterol, LDLC, HDLC, triglycerides, 
or their ratios [13]. Indeed, identification of rare loss-of-
function variants may reveal genes that can be targeted 
to prevent disease, such as the LDLC-lowering loss-of-
function variants in PCSK9, the identification of which 
resulted in the PCSK9 inhibitors for preventing CVD 
[14].

However, previous studies on PAVs for lipid traits were 
either limited to exome-focused genotyping arrays [8], 
individuals with suspected monogenic dyslipidemias 
[15], or simple clinical lipid measurements, e.g., total 
cholesterol, HDLC, and LDLC [9, 13, 16]. Lipidomic 
profiles consisting of more detailed lipid and lipoprotein 
subtypes can increase our understanding of the com-
plex lipidomic regulatory networks and, occasionally, 
outperform the traditional lipid variables in risk predic-
tion [17]. In addition, apolipoprotein concentrations 
provide added awareness of the burden of circulating 
lipoproteins. For example, one apolipoprotein B (apoB) 
molecule is embedded in each very-low-density lipo-
protein (VLDL), intermediate-density lipoprotein (IDL), 
low-density lipoprotein (LDL), and lipoprotein(a) (Lp[a]) 
particle and apoB seems to estimate the atherogenic risk 
more accurately than the traditional LDLC [18] or even 
multivariable data-driven sub-grouping of lipoprotein 
subtypes [19]. Furthermore, apolipoprotein C-III (apoC-
III)—found particularly in the triglyceride-rich lipopro-
teins (TRLs)—has been recently implicated as a CVD risk 
factor both in the general population and in individuals 
with type 1 diabetes [20, 21]. Genetic studies of these 
refined lipid phenotypes have revealed common variants 
contributing, e.g., to apoB concentrations [22], but also 
identified rare genetic factors with high impact, e.g., on 
apoC-III concentrations, reflected on the CVD risk [23].

In diabetes, high glucose, insulin, and insulin resistance 
can affect the lipid metabolism: for example, the apoC-III 
encoding APOC3 gene expression is decreased by insu-
lin [24] and stimulated by glucose [25]. Insulin resist-
ance leads to overproduction of large VLDL particles, 
resulting in elevated triglyceride concentrations [26]. In 
adipose tissues, insulin suppresses lipolysis leading to 
mobilization of free fatty acids from stored triglycerides; 

Conclusions: We identified lipid and apolipoprotein‑associated variants in the previously known LIPC and APOB 
genes, as well as PAVs in GTF3C5 associated with LDLC, and in RBM47 associated with apolipoprotein C‑III concentra‑
tions, implicated as an independent CVD risk factor. Identification of rare loss‑of‑function variants has previously 
revealed genes that can be targeted to prevent CVD, such as the LDL cholesterol‑lowering loss‑of‑function variants in 
the PCSK9 gene. Thus, this study suggests novel putative therapeutic targets for the prevention of CVD.

Keywords: Apolipoprotein A1, Apolipoprotein C‑III, Whole‑exome sequencing, Lipidomics, LIPC, APOB, RBM47, 
GTF3C5, MARCHF10, RYR3
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in the liver, insulin inhibits the transfer of triglycerides to 
apoB, resulting in an overproduction of VLDL in insulin-
resistant states [3].

Genetic studies on lipids in diabetes are of particular 
importance given the important role of glucose, insu-
lin resistance, and insulin itself, as well as the altered 
lipid metabolism and exacerbated cardiovascular risk in 
diabetic dyslipidemia. Notably, only a few studies exist 
addressing PAVs for lipid traits in the general population 
and only for the standard clinical lipids. Furthermore, 
there are no such studies in individuals with type 2 or 
type 1 diabetes, traits with conspicuously altered lipid 
metabolism. Combined with a wider range of lipid and 
lipoprotein distribution among individuals with diabetes, 
genetic studies on lipid and lipoprotein traits can yield 
novel discoveries for PAVs that may be generalized also 
to the general population. Finally, the Finnish population 
provides advantages and increased statistical power for 
studying rare variants, as some deleterious rare variants 
are present at higher frequencies in Finnish subjects due 
to population isolation and recent genetic bottlenecks 
[27]. Therefore, using whole-exome and whole-genome 
sequencing (WES and WGS, respectively), we aimed 
to identify novel PAVs and protein-truncating variants 
(PTVs, as putative loss-of-function variants) affecting 
serum lipid and lipoprotein measurements, comple-
mented with serum nuclear magnetic resonance (NMR) 
measurements in Finnish individuals with type 1 diabetes 
in the Finnish Diabetic Nephropathy (FinnDiane) Study 
[28, 29].

Methods
Cohort description
The Finnish Diabetic Nephropathy Study (FinnDiane) 
is an ongoing nationwide prospective multicenter study 
consisting of 93 participating centers, established in 1997 
to pinpoint risk factors for long-term diabetic compli-
cations [28, 29]. In these centers, all adult individuals 
with type 1 diabetes were invited to participate in the 
study during the active recruitment period. The study 
currently includes over 8000 Finnish individuals with 
type 1 diabetes. The clinical characterization of the par-
ticipants and the recruitment has been described earlier 
[29]. In brief, data on diabetic complications, history of 
cardiovascular event(s), and prescribed medications 
were registered using standardized questionnaires, and 
blood and urine samples were collected during a stand-
ard visit to the attending physician. DNA was extracted 
from blood. WES data were available for 481 participants 
[11], and WGS was performed for 598 participants, non-
overlapping with the WES individuals. Furthermore, the 
study includes GWAS data for 6449 participants [30, 31] 
overlapping with the individuals with WES or WGS; the 

non-overlapping GWAS participants were used for repli-
cation of the lead findings from WES and WGS.

Study design
We examined the exon content of WES and WGS data 
available for 481 and 474 FinnDiane participants with 
type 1 diabetes, respectively, in order to identify low-
frequency and rare PAVs and PTVs associated with lipid 
and lipoprotein measurements (Fig.  1). Replication was 
sought in the GWAS data for additional FinnDiane par-
ticipants with the same lipid variables [30], and using the 
available eight standard lipid phenotypes from the Global 
Lipids Genetics Consortium (GLGC) GWAS results for 
1,654,960 individuals [32], from lipid exome sequencing 
of >170,000 individuals [13], and exome sequencing of 
~450,000 UK Biobank participants [9]. Association with 
cardiometabolic endpoints were queried in the Finnish 
general population GWAS data from the FinnGen study 
[33] and in the UK Biobank exome sequencing data [9].

Phenotypes
Type 1 diabetes was defined as an onset of diabetes 
before the age of 40 and the initiation of permanent insu-
lin treatment during the first year after diagnosis. Among 
the 955 WES and WGS participants, 51% were men, 
mean age was 45.2 (standard deviation [sd] 10.5) years, 
and mean diabetes duration was 32.0 (sd 8.71) years 
(Additional file 1: Table S1).

Serum lipid and apolipoprotein concentrations were 
determined at the central research laboratory (CL) of 
Helsinki University Hospital, Finland [34], with more 
detailed methods in Additional file 1: Table S2.

Proton NMR spectroscopy was utilized to quantify 
numerous lipoprotein subclasses and their contents along 
with several metabolites from the serum of 3544 FinnDi-
ane participants at the University of Eastern Finland 
(Kuopio, Finland) as detailed earlier [35]. Lipoproteins 
were classified according to their diameter into VLDL, 
IDL, LDL, and HDL particles. These were further sub-
divided as described earlier [36]. The spectroscopy was 
tailored to target three molecular windows: lipoprotein 
lipids, low molecular weight compounds [37], and serum 
lipid extracts [38]. The method has been shown to result 
in consistent lipid–gene associations [39], and many of 
these measures have been validated by a related NMR 
biomarker profiling platform developed by the commer-
cial successor of the University of Eastern Finland NMR 
laboratory, Nightingale Health Plc [40, 41]. The NMR 
spectroscopy was performed in four different batches. 
We included in the study 65 NMR lipid phenotypes avail-
able for ≥400 individuals with WES or WGS data (Addi-
tional file 1: Table S2).
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Lipid-lowering medication, defined as the use of 
statins, was accounted for by using a similar approach 
previously adopted by others [8, 42]. We divided total 
cholesterol by 0.8 to account for the 20% reduction in 
serum total cholesterol induced by statins [43]. We used 
this adjusted value to calculate LDLC with the Friede-
wald formula [44]. We divided the subgroups of NMR-
measured LDLC by 0.7 to account for a 30% reduction 
in LDLC. As statins also affect the VLDL particles, the 
NMR VLDL cholesterol measurements were divided by 
0.8 [45]. We left serum triglyceride and HDLC measure-
ments unadjusted, as heritability estimates do not sig-
nificantly improve when adjusting for statin use [46]. All 
other lipid variables were left unadjusted, as the exact 
effect of statins remains unclear.

We performed principal component analysis (PCA) on 
the 79 lipid and lipoprotein traits with FactoMineR v2.4 
R package [47] after imputing the missing values with 
missMDA v1.18 R package [48] and estimated the num-
ber of independent phenotypes based on the eigenvalues.

The diagnosis of CAD was based on data from Statis-
tics Finland and the National Care Register for Health 
Care using the ICD-10 codes I21, I22, and I23 for myo-
cardial infarction, and the Nordic Classification of Sur-
gical Procedure codes for coronary bypass surgery or 
coronary balloon angioplasty [49]. The kidney status was 

based on albuminuria status, and subjects were classified 
as having normal albumin excretion rate (AER <20 μg/
min), microalbuminuria (20–199 μg/min), macroalbumi-
nuria (≥200 μg/min), or renal failure requiring dialysis or 
kidney transplant.

Whole‑exome and whole‑genome sequencing data
The WES study design was initially optimized for DKD, 
such that half of the individuals had normal AER despite 
long (≥32 years) diabetes duration, half had severe DKD, 
i.e., macroalbuminuria and/or renal failure at the end 
of the follow-up. The sequencing process, variant call-
ing, annotation, and quality control have been described 
earlier [11, 12]. In brief, sequencing was performed with 
Illumina HiSeq2000 platform at the University of Oxford, 
UK, with an average requirement of 20× target capture 
with an above 80% coverage, resulting in mean sequenc-
ing depth of 54.97 bases per position. Variant calling was 
performed with Genome analysis toolkit (GATK) v2.1 
[50], with human genome assembly GRCh37 as refer-
ence. Variants were updated to the GRCh38 assembly 
using the UCSC liftOver tool [51] with default param-
eters and a hg19 to hg38 chain file.

Similar to WES, the WGS data included 292 con-
trols with normal AER and long diabetes duration (≥35 
years) and 291 cases with severe DKD at the end of the 

Fig. 1 Flowchart of the study design. PTVs: protein‑truncating variants, i.e., exon loss, frameshift, stop or start gained or lost, splice acceptor, and 
donor variants. PAVs: protein‑altering variants, defined as PTV plus missense variants, inframe insertions, and deletions. T1D, type 1 diabetes. GLGC: 
Global Lipids Genetics Consortium. UKBB: UK Biobank. CAD, coronary artery disease. MI, myocardial infarction
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follow-up. The sequencing was performed using an Illu-
mina HiSeq X platform (Macrogen Inc., Rockville, MD, 
USA). Variant calling was done using Broad Institute’s 
best practices guidelines with GATK v4 [52]. The human 
genome assembly GRCh38 was used as reference. Vari-
ants were filtered to those with variant call rate >98% and 
in Hardy Weinberg equilibrium (HWE; p-value >10−10, 
or >10−50 in HLA region, as all had type 1 diabetes). The 
final data included 21.92 million variants. A total of 573 
samples passed the quality control filters, including the 
percentage of mapped de-duplicated reads and excess 
heterozygosity. Principal component analysis indicated 
no population outliers. Lipid-related phenotypes were 
available for 474 individuals.

All WGS and WES variants were annotated for 
their functional effects with the SnpEff v4.3 [53] and 
GrCh38.86 database. Variants classified by SnpEff as PTV 
(exon loss, frameshift, stop or start gained or lost, splice 
acceptor, and donor variants) and PAVs (PTV plus mis-
sense variants, and inframe insertions or deletions) were 
included in the analyses.

Single‑variant analysis for WES and WGS variants
All PAVs were tested for association with the lipid and 
apolipoprotein phenotypes, separately for WES and 
WGS data sets, using the Rvtests v. (2019-02-09) score 
test [54]. Analyses were adjusted for sex, age, and the two 
first genetic principal components. The NMR-measured 
phenotypes were additionally adjusted for the NMR 
measurement batch. Inverse normal transformation was 
performed for all trait residuals. Finally, single-variant 
meta-analysis of WES and WGS cohorts was performed 
with RAREMETAL [55] (Fig. 1). Exome-wide significance 
was defined as p<4.3×10−7, adjusted for 116,567 tested 
variants (Bonferroni correction for multiple testing 
with α=0.05 significance level). P-values < 1×10−5 were 
considered suggestive. Detailed single-variant statisti-
cal analyses and plotting, including survival models for 
CVD phenotypes, were performed in R using the survival 
package [56]. Power calculations were performed with 
R genpwr package [57] for lipid associations, and with R 
survSNP [58] v0.25 for survival analysis.

We used Sanger sequencing to confirm the 21bp dele-
tion in the RBM47 gene in seven heterozygotes with lipid 
data. We designed the primers with Primer3 software 
[59] and ordered them from Sigma-Aldrich Company Ltd 
(Haverhill, UK), and sequencing was performed at FIMM 
(Institute for Molecular Medicine Finland, Helsinki, 
Finland).

Single‑variant replication
Variants with a P-value <1×10−5 from the single-var-
iant meta-analysis were chosen for replication in the 

FinnDiane GWAS data with 6449 individuals, genotyped 
with Illumina HumanCoreExome Bead arrays, genotypes 
called with zCall algorithm [60], and initial quality con-
trol performed at the University of Virginia [31]. Geno-
typing data were lifted over to build version 38 (GRCh38/
hg38), and data from the four genotyping batches were 
merged. In sample-wise quality control, individuals with 
high genotype missingness (>5%), excess heterozygo-
sity (±4 standard deviations), and non-Finnish ancestry 
(none) were removed. In variant-wise quality control, 
variants with high missingness (>2%), low HWE p-value 
(<10−6), or minor allele count (MAC) <3 were removed. 
Chip genotyped samples were pre-phased with Eagle 
2.3.5 [61], and genotype imputation was performed with 
Beagle 4.1 (version 08Jun17.d8b) [62] based on the pop-
ulation-specific SISu v3 imputation reference panel with 
WGS data for 3775 Finnish individuals [63]; only variants 
with good imputation quality of r2>0.8 were included. 
Depending on the phenotype, data were available for up 
to 4653 individuals for total cholesterol after excluding 
the FinnDiane WES and WGS individuals to ensure inde-
pendent replication. Rvtests software [54] was used, and 
analyses with score test were adjusted for sex, age, and 
the kinship matrix.

Furthermore, replication was sought in three additional 
general population data sets with a total of eight lipid 
phenotypes available: The GLGC consortium GWAS 
data [32] (total cholesterol, HDLC, LDLC, triglycer-
ides, and non-HDLC), UK Biobank WES of 3994 health 
traits in 454,787 individuals [9] (total cholesterol, HDLC, 
LDLC, triglycerides, apolipoprotein A, apoB), and lipid 
WES [13] (total cholesterol, HDLC, LDLC, triglycerides, 
TG-to-HDLC ratio, and non-HDLC).

WES and WGS gene‑based analysis
Gene-based tests were performed for WES and WGS 
data using the optimized sequence kernel association test 
(SKAT-O) [64]. We analyzed the burden of PAVs or PTVs 
with a minor allele frequency (MAF) < 5% using Rvtests 
[54] --kernel skato option. Analyses were adjusted for 
age, sex, and two genetic principal components. NMR 
phenotypes were further adjusted for the measurement 
batch. Statistical significance for the burden of PAVs and 
PTVs were defined as 2.9×10−6 and 1.0×10−5, respec-
tively (adjusted for up to 17,022 genes with PAVs, and 
4810 genes with PTVs in the WES-WGS meta-analysis; 
Bonferroni correction with α=0.05). Significant WES 
SKAT-O results were internally replicated with WGS 
SKAT-O results, and vice versa (Fig. 1). Replication was 
defined as P<0.05.

Meta-analysis of the gene-based enrichment of PAVs 
and PTVs in WES and WGS data was performed with 
SKAT [65] and variant threshold (VT) tests implemented 
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in RAREMETAL [55] based on the single-variant score 
test results (described above) and covariance matrices 
from Rvtests [54]. The pooled variants were re-anno-
tated with the anno tool in RAREMETAL before analy-
sis. Again, variants were limited to those with MAF <5% 
and analyzed for all PAVs, or PTV variants only. In addi-
tion, gene aggregate findings were limited to genes with a 
cumulative minor allele count (CMAC) of ≥5 (i.e., total 
aggregated number of the minor allele counts of the eli-
gible variants in a gene; 12,686 genes with PAVs with 
MAF<5% and CMAC ≥5; and 1418 genes with PTVs 
with MAF<5% and CMAC ≥5). A significant burden of 
PAVs or PTVs was defined with the same thresholds as 
for WES and WGS SKAT-O analysis.

For CYP3A43, single-variant and SKAT gene aggre-
gate test meta-analysis were performed similarly with 
Rvtests [54] and RAREMETAL [55], stratified by the use 
of statins.

Replication of gene aggregate findings
Replication for gene aggregate findings was sought from 
the UK Biobank WES [9] and lipid WES [13] utilized also 
for the single-variant replication. For UK Biobank, we 
selected the tests including predicted deleterious PAVs 
and the putative loss-of-function variant of 1% (M1.1 
and M3.1); for the lipid WES, we used the BURDEN and 
SKAT test results for deleterious PAVs of <1%. We fur-
ther tested replication of the single variants within the 
gene aggregate findings using the FinnDiane GWAS data 
of non-overlapping individuals, similar to the single-vari-
ant replication described above.

Gene‑level association with cardiovascular endpoints
The lead genes were tested for association with any DKD 
(micro- or macroalbuminuria or renal failure vs. normal 
AER), severe DKD (macroalbuminuria or renal failure 
vs. normal AER), renal failure vs normal AER, and CVD 
in the FinnDiane WES + WGS data with SKAT meta-
analysis implemented with Rvtests [54] and RAREM-
ETAL [55] similar to the lipid phenotypes. Furthermore, 
gene aggregate associations with cardiovascular end-
points (CAD, myocardial infarction, stroke, hyperlipi-
demia) were queried from the UK Biobank WES data [9]. 
For the identified PAVs in the lead genes, we sought for 
variant associations with cardiovascular endpoints in the 
FinnGen study GWAS results for stroke (two definitions), 
CVD, hypertension, and statin medication phenotypes 
constructed from ICD codes for 218,792 individuals 
(release 5) [33]. Wider search was performed based on 
all 109 “Diseases of the circulatory system” phenotypes 
for 176,899 Finnish individuals (freeze 4, accessed 11 
March 2021; freeze r7 for the VT lead genes RYR3 and 
MARCHF10, accessed 27 June 2022). Variant enrichment 

estimates in the Finnish population vs. the gnomAD non-
Finnish-non-Estonian European samples were available 
in the same data.

Functional annotation
Ensembl Variant Effect Predictor [66] was used to predict 
the effect of the identified variants, based on SIFT [67] 
and PolyPhen-2 [68] scoring. Gene expression in various 
tissues was used to annotate identified genes and studied 
in the Human Protein Atlas [69].

Results
The WES and WGS data included 42,682 and 101,718 
PAVs, respectively, available for participants with lipid 
data (Additional file 1: Table S3); 79–82% were low-fre-
quency variants with MAF<5%. A total of 2240 and 9577 
variants in WES and WGS, respectively, were annotated 
as PTV likely to disrupt the protein structure; defined 
here as frameshift, stop or start gained or lost, exon 
loss, or splice site acceptor and donor variants. The vast 
majority, 82–90% of the PTVs, had MAF<5%. For the 
standard lipid measurements (N~920), the effect size 
required for 80% statistical power to obtain an exome-
wide significant p-value of <4.3×10−7 for a variant with 
a MAF of 5%, 1%, or 0.1% was of 0.62 standard deviations 
(sd), 1.37 sd, and 4.31 sd on the lipid distribution, respec-
tively (Additional file 1: Fig. S1). The studied lipid values 
were correlated with each other (Additional file  1: Fig. 
S2), and principal component analysis suggested that 12 
components were sufficient to explain 95% of the pheno-
typic variance.

Single‑variant association analysis
In the WES-WGS meta-analysis, a missense variant 
rs113298164 (p.Thr405Met, MAF 1.7%) in the LIPC 
gene was associated with higher serum apolipopro-
tein A1 (apoA1) concentrations (p=7.8×10−8; Table  1, 
Fig.  2A). In p.Thr405Met carriers (n=31), the median 
serum apoA1 was 163 mg/dl (inter-quartile range [IQR] 
145–183) mg/dl, vs. 138 (IQR 121–153) mg/dl in the 
non-carriers (multivariable ANOVA p=1.46×10−9). In 
Cox proportional-hazard models, p.Thr405Met was not 
associated with CAD, nor with stroke (Additional file 1: 
Fig. S3). However, we had only 35% power to detect an 
association with a hazard ratio [HR] of 1.5.

Furthermore, 25 variants were suggestively associ-
ated with lipid, apolipoprotein, and lipoprotein phe-
notypes (p<1×10−5; Additional file  1: Table  S4). One of 
the variants was a 21-bp inframe deletion in the RBM47 
gene (p.Ala496-Ala502del, rs564837143, MAF=1.0%, 
p=2.5×10−6) found in the WGS data only, and associated 
with lower serum apoC-III concentrations, with median 
apoC-III of 3.74 (IQR=3.38–4.69) mg/dl in the six 



Page 7 of 18Sandholm et al. Genome Medicine          (2022) 14:132  

p.Ala496-Ala502del carriers vs. 7.79 (IQR=5.62–10.51) 
mg/dl in the non-carriers (Fig. 2C). The variant was nom-
inally associated with TG and VLDL phenotypes (Fig. 2D; 
Additional file 1: Table S5). In the subsequent analysis of 
the full WGS data with nine p.Ala496-Ala502del carriers 
(with or without apoC-III available), three experienced a 
CAD event during the full study period, not significantly 
different from the non-carriers (Additional file 1: Fig. S3).

While not reaching our threshold for suggestive sig-
nificance, we also observed associations for many well-
known coding variants associated with lipid traits, e.g., 
the protective PCSK9 p.Arg46Leu loss-of-function vari-
ant [70] associated with lower cholesterol concentrations 
(p=2×10−4; Additional file 1: Table S6).

Replication of single‑variant associations
The FinnDiane GWAS dataset contained 25 of the 26 
lead variants with good imputation quality (r2>0.8). 
Two of these were replicated with nominal significance: 
p.Thr1017Ala (rs45604939) in FNDC3A was associated 
with higher total cholesterol (MAF=0.063, p=0.04); and 
p.Ala382Val (rs202207045) in GTF3C5 with lower LDLC 
and non-HDLC (MAF 0.008, p=0.02 for both; Table  1, 
Additional file  1: Table  S4). Furthermore, replication 
in the GLGC GWAS data, UK Biobank WES, and lipid 
WES for available standard lipid measurements indi-
cated that LIPC p.Thr405Met was significantly associated 
with apolipoprotein A (apoA; p=9.3×10−46) and other 
lipid phenotypes (p<0.05/27/8=2.3×10−4), rs451195 

(p.Asn190Ser) in PPIC with HDLC (p=2.1×10−7), and 
rs45580533 (p.Gln118Arg) in ZNF247 with total choles-
terol, LDLC, and non-HDLC (p<3.0×10−13). A total of 15 
variants reached a nominal p<0.05 for at least one of the 
studied phenotypes (Additional file 1: Table S7).

WES and WGS gene‑based analysis
We performed SKAT-O gene aggregate tests to identify 
genes enriched for low-frequency (MAF≤5%) PAVs and 
PTVs. In WES, PAVs in AKAP3 were significantly associ-
ated (p<2.9×10−6, adjusted for 17,022 genes) with the tri-
glyceride content of the extremely large VLDL particles 
(p=1.4×10−7; Table  2). Furthermore, PTVs in PTGER3 
were significantly associated (p<1.0×10−5, adjusted for 
4810 genes) with free cholesterol in medium-sized HDL 
particles (p=9.8×10−6). Two additional genes reached 
a suggestive p-value <1×10−5 for PAVs (Table  2). In 
WGS, SKAT-O analysis revealed that PAVs in RBM47 
were associated with serum apoC-III concentrations 
(p=2.2×10−6). Of note, the association was driven by 
the 21 bp inframe deletion of the RBM47 gene identi-
fied in the WGS single-variant analysis (SKAT p=0.28 
when p.Ala496-Ala502del excluded). Furthermore, in 
WGS, PTVs in SBDS were also associated with serum 
apoC-III concentrations (stop gain, and a splice donor 
variant; p=5.0×10−6). Finally, a splice donor PTV in the 
DEFT1P/DEFT1P2 genes was associated with phospho-
lipids in extra-large VLDL particles (p=1.3×10−6). Four 

Table 1 Single‑variant association results for variants reaching exome‑wide significance (p<4.3×10−7), or with evidence of replication 
in type 1 diabetes (p<0.05) or in the general population (p<0.05/27/8=2.3×10−4)

Variant chromosome:base pair position with REF>ALT alleles, amino acid change, and rs identifier, MAF minor allele frequency, SIFT/Polyphen predicted effect, Beta (se) 
effect size beta and standard error, PReplP-value for replication in GWAS data, P lipids the lowest p-value within the GLGC GWAS, UKBB WES, and lipid WES (Hindy et al.) 
for the corresponding or closest matching lipid phenotype
a rs45604939 association with total cholesterol was obtained for the NMR measured total cholesterol; replication with standard laboratory total cholesterol
b rs202207045 MAF in Hindy et al. was markedly lower, 2.5×10−5

Gene Variant MAF SIFT/PolyPhen Phenotype N P‑value Beta (se) PRepl P lipids

LIPC 15:58563549 C>T  
p.Thr405Met rs113298164

0.017 Deleterious, probably 
damaging

apoA1 918 7.8×10−8 0.98 (0.18) 0.89 apoA (UKBB): 
p=9.3×10−46

GTF3C5 9:133054787 C>T 
p.Ala382Val rs202207045

0.007b Tolerated, benign LDLC 894 1.3×10−6 −1.35 (0.28) 0.02 LDLC (Hindy): p=0.125

GTF3C5 9:133054787 C>T 
p.Ala382Val rs202207045

0.007b Tolerated, benign Non‑HDLC 919 7.3×10−7 −1.38 (0.28) 0.02 Non‑HDLC (Hindy) 
p=0.199

FNDC3A 13:49201861 A>G 
p.Thr1017Ala rs45604939

0.064 Deleterious, probably 
damaging

CHOLa 748 8.8×10−6 0.46 (0.10) 0.04 CHOL (Hindy) p=0.35

PPIC 5:123023945 T>C 
p.Asn190Ser rs451195

0.156 Deletorious, benign HDLFC L 487 5.0×10−6 0.43 (0.09) 0.87 HDLC (GLGC) p=2.1×10−7

ZNF274 19:58206912 A>G 
p.Gln118Arg rs45580533

0.021 Tolerated, benign VLDL L 487 9.3 ×10−6 −1.02 (0.23) 0.87 LDL (GLGC) p=3.0×10−13

ZNF274 19:58206912 A>G 
p.Gln118Arg rs45580533

0.021 Tolerated, benign VLDLTG L 748 5.5 ×10−6 −10.5 (0.23) 0.81 TG (GLGC) p=0.003
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additional genes had PAVs suggestively associated with 
lipid phenotypes (p<1×10−5; Table 2).

Given the lack of available WES studies of individuals 
with type 1 diabetes and with rich lipidomic data, we 
sought for replication of the suggestive SKAT-O results 
by performing an internal replication between the two 
data sets. The PAVs of the TRMT5 gene were sugges-
tively associated in WGS with free cholesterol in IDL 
particles (p=6.8×10−6) and with phospholipids in extra 
small VLDL particles (p=5.9×10−6), and these associa-
tions were replicated in WES (p=0.019 and p=0.015, 
respectively; Table 2). In addition, the suggestive asso-
ciation between PAVs in CYP3A43, and cholesterol 
esters in large LDL particles in WGS (p=8.7×10−6), 
was replicated in WES (p=0.038). CYP3A43 encodes 
a member of the cytochrome P450 proteins, which 
metabolize endogenous compounds and xenobiotics; 
in special, the cholesterol-lowering statins are exten-
sively metabolized by two other CYP3A family mem-
bers CYP3A4 and CYP3A5 [71]. Analysis stratified by 

the use of statins suggested that PAVs in CYP3A43 were 
associated with lower cholesterol esters in large LDL 
particles among those using statin medication in par-
ticular (Additional file 1: Fig. 4A).

Gene‑level meta‑analysis
Finally, to increase the statistical power, we performed 
gene aggregate analysis in the combined WES and WGS 
data by applying SKAT meta-analysis for PAVs and 
PTVs with MAF ≤5%. The burden of PAVs was signifi-
cantly associated (p<2.9×10−6) with lipid phenotypes 
in four genes, LIPC, RBM47, TRMT5, and GTF3C5 
(Table  3; Manhattan and QQ-plots in Additional file  1: 
Fig. S5). PAVs in the LIPC gene—including rs113298164 
from the single-variant meta-analysis—were associ-
ated with serum apoA1 concentrations (p=1.48×10−7). 
The PAVs in RBM47 were associated with serum apoC-
III concentrations also in the WES-WGS SKAT meta-
analysis (p=1.33×10−6), and PAVs in TRMT5 were 
associated with phospholipids in extra small VLDL 

Fig. 2 Rare variants in LIPC and RBM47 are associated with serum apoA1 and apoC‑III concentrations, respectively. A LIPC p.Thr405Met 
(rs113298164) is associated with higher apoA1 (p=7.8×10−8; multivariable ANOVA p= 1.46×10−9; N=887 carriers, 31 non‑carriers). Group 
number in A and C indicates the number of rare variants, i.e., 0 refers to non‑carriers, 1 refers to heterozygous variant carriers. B LIPC p.Thr405Met 
associations across all studied phenotypes. C Serum apoC‑III concentrations are reduced in the RBM47 p.Ala496‑Ala502del (rs564837143) carriers 
(p=2.49×10−6, multivariable ANOVA p=2.92×10−4; N = 288 non‑carriers, 6 carriers). D RBM47 p.Ala496‑Ala502del associations across all studied 
phenotypes
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particles (p=7.87×10−7). The TRMT5 PAVs were nomi-
nally associated also with multiple IDL phenotypes 
(Fig.  3). Finally, PAVs found in the GTF3C5 gene were 
associated with total cholesterol, LDLC, and non-HDLC.

To capture genes with rare variants associated with 
lipid traits, we additionally performed variant threshold 
(VT) gene burden test. For most of the SKAT lead genes, 
the VT selected the same number of variants. In addition, 

Table 2 WES and WGS SKAT‑O results and the internal replication in the other data set

All genes reaching a suggestive p-value <1×10−5 are shown. P-values <2.9×10−6 for PAVs, and p-values <10−5 for PTV burden were defined as statistically significant, 
highlighted in italics; in replication, p-values <0.05 are highlighted in italics

Discovery exome-wide analysis of either WGS or WES data, Replication for WGS, replication in WES data; for WES, replication in WGS data, Gene position chromosome 
number:start-end; if multiple gene isoforms exist, only one set of coordinates are given, Type burden of PAVs or PTVs, Nvar number of variants of the given variant type 
in the gene in discovery/ replication data, apoC-III serum apolipoprotein C-III, CHOL total cholesterol, TG triglycerides, HDLCE L cholesterol ester in large HDL, HDLFC M 
free cholesterol in medium HDL, HDLTG XL TG in extra-large HDL, IDLFC free cholesterol in IDL particles, LDL M total lipids in medium LDL, LDLC L cholesterol in large 
LDL, LDLCE M/L cholesterol esters in medium/large LDL, VLDL XL total lipids in extra-large VLDL, VLDLPL XS/XL phospholipid in extra small/extra-large VLDL, VLDLTG XXL 
TG in extremely large VLDL

Discovery Replication

Gene Gene position Type Pheno N Nvar P N Nvar P

Discovery study: WGS
 DEFT1P/ DEFT1P2 8:7006280‑7008824 PTV VLDLPL XL 187 1 1.3×10−6

 SBDS 7:66987676‑66995696 PTV apoC‑III 294 2 5.0×10−6

 RBM47 4:40423254‑40629866 PAV apoC‑III 294 3 2.0×10−6 323 1 0.398

 TRMT5 14:60971448‑60981690 PAV CHOL 329 8 3.5×10−6 419 4 0.322

VLDLPL XS 329 8 5.9×10−6 419 4 0.015
IDLFC 329 8 6.8×10−6 419 4 0.019
LDLC L 329 8 9.3×10−6 419 4 0.436

 CCAR1 10:68721143‑68792377 PAV VLDL XL 329 2 7.4×10−6 419 3 0.555

 CYP3A43 7:99828012‑99866106 PAV LDLCE M 329 6 8.7×10−6 419 3 0.067

LDLCE L 329 6 8.7×10−6 419 3 0.038
LDL M 329 6 9.2×10−6 419 3 0.074

 DIPK1A 1:92832728‑92961522 PAV TG 451 4 9.9×10−6 469 3 0.848

Discovery study: WES
 PTGER3 1:70852352‑71047808 PTV HDLFC M 419 1 9.8×10−6 329 1 0.119

 AKAP3 12:4615507‑4649047 PAV VLDLTG XXL 304 5 6.0×10−7 245 5 0.766

 TTYH1 19:54415430‑54436719 PAV HDLCE L 419 3 5.7×10−6

 ATP4A 19:35550192‑35563658 PAV HDLTG XL 419 3 8.1×10−6 329 3 0.810

Table 3 Significant WES‑WGS SKAT meta‑analysis results for genes enriched for PAVs (p<2.9×10−6) or PTVs (p<1×10−5) using SKAT or 
VT algorithms

Type burden of PAVs or PTVs, Nvar number of variants of the given variant type, PLiuP-value for SKAT gene burden, calculated with Liu method, Effect pooled effect size 
estimate β from the VT test, VLDLPL XS/XL phospholipid in extra small/extra-large VLDL, VLDLTG XS triglycerides in extra small VLDL particles

SKAT VT

GENE Type Pheno N Nvar PLiu Nvar MAF cutoff Effect P

DEFT1P PTV VLDLPL XL 445 1 1.23×10−6 1 0.020 1.157 1.23×10−6

SBDS PTV apoC‑III 617 2 5.37×10−6 2 0.005 1.692 1.86×10−5

LIPC PAV apoA1 918 6 1.48×10−7 4 0.017 1.004 2.12×10−8

GTF3C5 PAV Non‑HDLC 919 8 6.86×10−7 8 0.007 −0.536 0.014

LDL Friedewald 920 8 9.27×10−7 8 0.007 −0.705 1.35×10−3

Total cholesterol 920 8 1.30×10−6 8 0.007 −0.522 0.016

TRMT5 PAV VLDLPL XS 738 8 7.87×10−7 8 0.007 −0.985 3.20×10−7

RBM47 PAV apoC‑III 617 3 1.33×10−6 3 0.005 −1.228 7.20×10−4

RYR3 PAV VLDLTG XS 748 25 1.30×10−4 24 0.009 0.530 2.08×10−6

MARCH10 PAV VLDLPL XS 748 5 1.14×10−5 4 0.003 −1.498 2.24×10−6
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rare variants in two genes, RYR3 and MARCH10, were 
associated with phospholipid and triglyceride content in 
extra small VLDL particles (Table 3).

Replication of gene‑level analysis results
Replication of the gene aggregate results was sought 
from the lipid WES by Hindy et al .[13] and UK Biobank 
WES [32] for available standard lipids. Variants in LIPC 
were associated with apoA (p=4.9×10−110); variants in 
RBM47 with apoB (p=7.8×10−4) and other lipid traits 
(Table  4). Furthermore, variants in CYP3A43, GTF3C5, 
AKAP3, and RYR3 were nominally associated with lipid 
traits (p<0.05).

We further sought replication for the individual vari-
ants contributing to the gene-level meta-analysis results. 
Among the 63 PAVs found in these lead genes, 34 were 
found with good imputation quality in the FinnDiane 
GWAS data. In addition to the abovementioned GTF3C5 
rs202207045 variant association in the GWAS replica-
tion data (p=0.02 for LDLC and non-HDLC), a LIPC 
p.Phe368Leu (rs3829462) variant was associated with 
higher apoA1 (MAF=0.046, p=0.02), along with a rare 
(MAF=0.0002, MAC=1.5) low imputation quality (0.37) 
LIPC p.Ser301Phe variant (p=0.04; Table  5, Additional 
file 1: Table S8).

Association with cardiovascular outcomes
Since dyslipidemia is a major risk factor for diabetic 
complications, as well as a cardiovascular risk fac-
tor in the general population, we investigated whether 
the lead genes were associated with cardiovascular and 
kidney outcomes. In the discovery study SKAT meta-
analysis of the WES and WGS data for DKD and CVD, 

PAVs in CYP3A43 were associated with DKD (p=0.004, 
rank 43/17,578 genes, i.e., top 0.3%: Additional file  1: 
Table S9). In the UK Biobank WES [9], putative loss-of-
function variants (MAF≤1%) in GTF3C5 were associated 
with CAD (OR 1.89, 95% CI 1.26–2.84, p=0.0022; signifi-
cant after correction for 12 lead genes, but not for three 
investigated phenotypes; Additional file 1: Table S10).

In the FinnGen general population GWAS data, 
among the significant or replicated variants within the 
lead genes, the LIPC p.Ser301Phe variant, as well as the 
TRMT5 p.Ala456Val and p.Ser185Cys variants, was 
associated with the stroke and CVD phenotypes (LIPC 
p.Ser301Phe p=0.0024 for the wide stroke definition; 
TRMT5 p.Ser185Cys p=0.0010 for the wide stroke defi-
nition; Table  5). We then extended the FinnGen study 
GWAS data queries to all identified PAVs in the gene-
level meta-analysis lead genes and all 109 cardiovas-
cular endpoints. The strongest evidence of association 
was found for a rare (MAF=0.004) deleterious start-
loss variant rs189383196 in GTF3C5, 80-fold enriched 
in the Finnish population, and associated with non-
ischemic cardiomyopathy (p=2.8×10−5), hypertension 
(p=6.7×10−4), and 18 other circulatory phenotypes 
(p<0.05; Additional file 1: Table S11). Also, another rare 
(MAF=0.001) deleterious rs369889499 (p.Tyr347Cys) 
variant in GTF3C5 was 77-fold enriched in the Finns- and 
associated with multiple phenotypes, including angina 
pectoris (p=9.20×10−5) and ischemic heart disease 
(p=6.10×10−4). In MARCHF10, rs199705946 sugges-
tively associated with lower phospholipid concentrations 
in the VLDL particles (p=0.07) was exclusively found 
in the Finnish population with MAF of 0.3%, predicted 
deleterious by SIFT and PolyPhen-2, and was associated 

Fig. 3 Associations across all studied lipid phenotypes for the lead genes. Only nominally significant associations (WES‑WGS SKAT meta‑analysis 
p<0.05) are shown. The color indicates the effect size estimate of the gene–phenotype association calculated with a burden test meta‑analysis 
for normalized distributions assuming same effect direction for all variants. A WES‑WGS PAV meta‑analysis across phenotypes. B WES‑WGS PTV 
meta‑analysis across phenotypes. The phenotypes are ordered according to their similarity in clustering of the phenotype data
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with cardiomyopathy (p=3.40×10−5, OR=3.7). In the 
TRMT5 gene, the variant with the strongest individual 
association, rs115400838 (p.Ser185Cys), was associated 
with multiple stroke phenotypes, e.g., “stroke, excluding 
subarachnoid hemorrhage” (p=1.90×10−4).

Association for genes causing monogenic forms 
of dyslipidemia
Previously, rare variants in multiple genes have been 
associated with severe monogenic forms of dyslipi-
demia. We studied the PAV and PTV burden in 19 
genes causing monogenic dyslipidemias and overlap-
ping previous lipid GWAS loci, including the LIPC 
gene (p<0.05/19 = 0.0026 considered significant 
after correction for multiple testing; Additional file  1: 
Table  S6) [72]. In the hypercholesteremia-causing 
APOB gene, we identified two frameshift PTVs in exon 
26/29 (rs1232943044 (p.Ala3215fs) and rs1407451220 
(p.Ser1943fs)), associated with low serum non-
HDLC (p=4.8×10−4), apoB (p=5.6×10−4), and LDLC 
(p=9.5×10−4) concentrations (Additional file  1: Fig. 
S6), as well as with triglyceride content in small VLDL 

particles (p=0.001; Additional file 1: Fig. S7, Additional 
file 1: Table S6). These PTVs have not been previously 
associated with lipid traits. In addition to the above-
mentioned LIPC PAV association with serum apoA1 
concentrations, the PAVs in LIPC were associated with 
total HDLC and five other lipid phenotypes (Additional 
file 1: Fig. S7, Additional file 1: Table S6). In the CETP 
gene, known for genetic disorders of the HDL metab-
olism, PAVs were associated with serum apoA1 con-
centrations (p=6.9×10−5), total HDLC (p=4.0×10−5), 
and seven other lipid measurements in HDL particles, 
driven by two low-frequency missense variants, rs5880 
and rs1800777 previously associated with low HDLC 
[73]. PAVs in the hypercholesterolemia-associated 
APOE gene were associated with apoB (p=3.5×10−4), 
total HDLC (p=8.0×10−4), and total cholesterol and 
cholesterol esters in LDL particles, with large nega-
tive effects observed for the previously reported rare 
p.Glu57Lys (rs201672011) variant [74]. Finally, the 
three previously reported PAVs in the PCSK9 gene, 
including the protective rs11591147 (p.Arg46Leu) loss-
of-function mutation [70] were associated with total 

Table 5 Association with cardiometabolic endpoints for lead gene variants significant in WES+WGS meta‑analysis or GWAS 
replication

The table includes PTVs and variants with p<0.05 either in the WES+WGS single-variant meta-analysis or in the FinnDiane GWAS replication for the genes significant 
in the WES+WGS gene-level meta-analysis. Clinical endpoints were queried in the FinnGen GWAS data: Stroke + TIA wide stroke definition including transient 
ischemic attack (TIA), Stroke “stroke, including SAH (no controls excluded)”, CVD “Hard cardiovascular diseases” including coronary revascularization event, myocardial 
infarctions, and strokes excluding subarachnoid hemorrhages

Stroke + TIA Stroke CVD Statin medication

GENE Variant Consequence Pheno PWES+WGS PGWAS OR P OR P OR P OR P

DEFT1P rs797006828 splice donor VLDLPL XL 1.2×10−6

SBDS rs113993993 splice donor apoC‑III 5.9×10−6 0.19 1.04 0.62 1.04 0.60 0.99 0.81 1.03 0.51

SBDS rs113993991 stop gain apoC‑III 0.55

LIPC rs121912502 p.Ser301Phe apoA1 0.35 0.04* 2.01 0.0024 1.58 0.07 1.54 0.035 0.97 0.84

LIPC rs3829462 p.Phe368Leu apoA1 0.99 0.02 1.04 0.18 1.03 0.33 1.02 0.40 1 0.91

LIPC rs113298164 p.Thr417Met apoA1 7.8×10−8 0.89 0.93 0.15 0.98 0.67 0.97 0.43 1.02 0.52

GTF3C5 rs189383196 start lost, p.Met126Thr Non‑HDLC 0.38 0.17 0.99 0.81 0.96 0.48 1.02 0.75 1.12 0.0058
GTF3C5 rs202207045 p.Ala382Val Non‑HDLC 7.3×10−7 0.02 0.93 0.36 0.96 0.59 0.92 0.21 0.98 0.77

LDL Fried 1.3×10−6 0.02
CHOL CL 1.2×10−6 0.11

TRMT5 rs45604437 p.Ala456Val VLDLPL XS 5.8×10−4 0.53 0.9 0.28 0.73 0.0035 0.88 0.11 1.08 0.25

TRMT5 rs115400838 p.Ser185Cys VLDLPL XS 1.6×10−4 0.75 1.17 0.0010 1.21 6×10−4 1.12 0.012 1.06 0.12

RBM47 rs564837143 p.Ala496‑Ala502del apoC‑III 2.5×10−6 0.08 1.03 0.67 0.97 0.66 1.02 0.70 1.05 0.33

MARCHF10 rs147046907 p.Thr560Ile VLDLPL XS 1.07×10−6 0.76 1.08 0.30 1.09 0.32 0.99 0.89 0.99 0.87

MARCHF10 rs916315847 p.Gly143Arg VLDLPL XS 0.03
RYR3 rs2229119 p.Asn898Ser VLDLTG XS 7.42×10−3 0.22 0.99 0.86 1.04 0.55 1.03 0.50 1.08 0.0300
RYR3 rs200294137 p.Ile2417Val VLDLTG XS 0.04 0.87 0.41 0.92 0.66 1.05 0.71 1.06 0.56

RYR3 rs61996335 p.Pro3085Arg VLDLTG XS 0.03 0.22 0.92 0.27 0.86 0.05 1.02 0.81 1.04 0.38

RYR3 rs146201205 p.Met3641Val VLDLTG XS 1.39×10−3 0.66 0.98 0.70 0.97 0.62 1.01 0.83 0.94 0.08

RYR3 rs202181075 p.Asn3849His VLDLTG XS 0.01 0.68 0.97 0.55 0.96 0.36 1.04 0.25 1.08 0.0082
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cholesterol (p=3.0×10−4), LDLC (p=0.0014), and non-
HDLC (p=4.8×10−4).

Discussion
Dyslipidemia is a considerable risk factor for CVD. In 
addition to the standard clinical lipid laboratory meas-
urements, here we have used apolipoproteins as well as 
NMR lipid and lipoprotein measurements, combined 
with exome sequencing to identify genetic variants asso-
ciated with a total of 79 studied phenotypes. We iden-
tified associations in genes already implicated in lipid 
metabolism (e.g., rs113298164 in LIPC, two novel PTVs 
in APOB), as well as multiple novel genes for lipid phe-
notypes, e.g., RBM47 and SBDS for apoC-III concentra-
tions, GTF3C5 for LDLC, and TRMT5, MARCHF10, 
and RYR3 for phospholipids and triglycerides in VLDL 
particles.

The lead variant in the single-variant analysis, 
rs113298164 (LIPC p.Thr405Met), was associated with 
elevated apoA1 concentrations (p=7.8×10−8). In addi-
tion, the burden of PAVs in LIPC was associated with 
apoA1 concentrations even after Bonferroni correction 
for the number of genes and 12 estimated independent 
phenotypes (p<2.4×10−7). LIPC encodes the hepatic 
lipase, which is the enzyme responsible for triglycer-
ide hydrolysis in IDL particles and, thus, the conversion 
of IDL to LDL particles. p.Thr405Met is predicted del-
eterious or probably damaging by SIFT and PolyPhen-2, 
and previous functional studies show that p.Thr405Met 
reduces hepatic lipase activity [75, 76]. With 1.7% MAF, 
it is over 4-fold enriched in the Finnish population. Previ-
ously, p.Thr405Met has been identified to cause hepatic 
lipase deficiency in a compound heterozygous state 
with another rare p.Ser301Phe mutation in LIPC, caus-
ing elevated total cholesterol, triglyceride, and triglyc-
eride-enriched VLDL and LDL particles, followed by 
premature atherosclerosis [76]; in our GWAS data, also 
the rs121912502 (p.Ser301Phe) variant was nominally 
associated (p=0.04) with apoA1 despite low imputation 
quality (0.37) and low MAF (0.0002). ApoA1 is a key 
structural component of HDL particles—generally asso-
ciated with a lower risk of CVD. While association with 
higher apoA1 and HDLC may seem contradictory to the 
association with high total cholesterol and hypertriglyc-
eridemia, severe hepatic lipase deficiency is characterized 
by an increase in apoA1, HDLC, and HDL triglyceride 
content [77], all seen in our data as well.

Common variants in the LIPC gene are strongly asso-
ciated with serum HDLC and apoA1 concentrations 
[22]. In a recent Mendelian randomization analysis, 
variants associated with elevated apoA1 concentrations 
were associated with lower risk of CAD in the univariate 

analysis; however, this effect disappeared when accounted 
for variants affecting apoB concentrations [22].

Importantly, we identified two PTVs in APOB associ-
ated with drastically low serum apoB concentrations 
(Additional file 1: Fig. S6); to our knowledge, these vari-
ants have not been previously associated with lipid traits, 
and they are not included in the GLGC GWAS [32], nor 
in the lipid WES by Hindy et al. [13] or UK biobank WES 
[9]. However, with only three individuals, we do not see 
any association with CVD endpoints.

In gene aggregate tests, we showed that RBM47 was 
associated with lower apoC-III concentrations. This 
association was driven by rs564837143, a 21 bp inframe 
deletion (p.Ala496-Ala502del) found in the WGS data, 
located in the 6th exon. The variant was also associ-
ated with triglyceride concentrations, especially in the 
VLDL particles. We obtained external validation for the 
association, as the burden of rare deleterious variants 
in RBM47 was associated with lower triglyceride levels 
(p=0.0013) and triglycerides-to-HDLC ratio (p=0.0028) 
in lipid WES of >170,000 individuals [13]. In UK Biobank 
WES, putative loss-of-function variants in RBM47 were 
associated with higher apoB (p=7.8×10−4) and LDLC 
concentrations (p=0.0027). Furthermore, another rare 
missense variant was recently shown to have a large 
impact on blood pressure in a large meta-analysis [78]. 
RBM47 encodes an RNA-binding protein essential for 
post-transcriptional modification of the apoB mRNA in 
particular. This modification creates a premature stop 
codon in the transcript, resulting in the production of the 
shorter intestinal isoform apoB-48 instead of the longer 
isoform apoB-100 produced by the liver [79]. Of note, we 
have previously shown that apoB-48 is elevated in indi-
viduals with type 1 diabetes both at fasting and postpran-
dially [80]. In this study, we do not have apoB isoforms 
measured for these participants, but we saw a mod-
est association also between RBM47 variants and lower 
serum apoB concentrations. Whereas one copy of apoB 
is firmly embedded within the surface of each TRL (i.e., 
chylomicrons, VLDL, and IDL) and LDL particle, apoC-
III is dynamically redistributed between these and HDL 
particles in the circulation [81]. ApoC-III is an impor-
tant regulator of triglyceride metabolism that impairs the 
clearance of the atherosclerotic, apoB-containing TRLs 
and their remnants through multiple pathways. One key 
action of apoC-III is the inhibition of lipoprotein lipase, 
and to some extent, also hepatic lipase encoded by the 
LIPC gene [21]. There is increasing evidence—also from 
genetic studies of a rare APOC3 loss-of-function vari-
ant [20, 23]—that apoC-III is an independent cardiovas-
cular risk factor, and clinical trials on apoC-III lowering 
therapies have yielded positive results in those with high 
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triglycerides. ApoC-III is an important CVD risk fac-
tor also in individuals with type 1 diabetes [20] and we 
recently showed that apoC-III concentrations are ele-
vated in individuals with DKD and predict future DKD 
progression [82]. However, with a low number of the 
RBM47 p.Ala496-Ala502 carriers, we did not have statis-
tical power to observe any association with CVD in our 
data (Additional file 1: Fig. S3).

PAVs in GTF3C5 were associated with total cholesterol, 
LDLC, and non-HDLC. Among the eight PAVs, six were 
predicted deleterious by SIFT and/or PolyPhen-2. One 
of them, chr9:133042147_C/T (p.His72Tyr), is a novel 
variant, with one heterozygous carrier found in our data 
(verified as good quality from the aligned BAM-file). 
Another variant, rs189383196, is either a high impact 
start-loss variant or a missense variant (p.Met126Thr), 
depending on the transcript, with over 80-fold enrich-
ment in Finns. The association for the strongest indi-
vidual variant, rs202207045 (p.Ala382Val), was replicated 
in the GWAS data (p=0.02 for LDLC and non-HDLC). 
The PAVs in this gene were associated with multiple 
circulatory phenotypes, e.g., non-ischemic cardiomyo-
pathy (p=2.8×10−5) in the independent FinnGen gen-
eral population GWAS data. Of note, this variant was 
not detected in the UK Biobank WES and had an MAF 
of 0.002% in the lipid WES by Hindy et al., and 0.07% in 
the GLGC GWAS. Interestingly, the strongest associa-
tion within the GTF3C5 region in the FinnGen GWAS 
data was at rs671412, 28 kbp downstream, with the use 
of statin medication (p=3.4×10−7). GTF3C5 encodes a 
DNA-binding general transcription factor IIIC subunit 
5, expressed in all tissues, and little is known about the 
function of this gene.

PAVs in TRMT5 were associated with phospholipids in 
extra small VLDL particles, both in WES and WGS sepa-
rately, as well as in WES-WGS SKAT-O meta-analysis. 
Among the eight identified variants, five were predicted 
deleterious. As supporting evidence, the deleterious mis-
sense variant with the strongest association with lower 
phospholipids in VLDL particles was associated with a 
higher risk of stroke in the FinnGen data (p=1.90×10−4). 
TRMT5 encodes a tRNA methyltransferase 5 involved in 
mitochondrial tRNA methylation and has not previously 
been associated with lipid traits.

Other novel findings worth mentioning are PTVs 
in SBDS, as well as PAVs in CYP3A43, PTGER3, and 
AKAP3. Loss-of-function variants in SBDS cause autoso-
mal recessive Shwachman-Diamond Syndrome 1, charac-
terized by exocrine pancreatic dysfunction among other 
symptoms [83]. Our observed association between het-
erozygous SBDS PTVs and apoC-III may be affected by a 
similar pathway. PAVs in CYP3A43 were associated with 

LDL cholesterol esters in WGS and replicated in WES; 
CYP3A43 was the only gene with evidence of associa-
tion with clinical outcome in our WES-WGS data (SKAT 
p=0.004 for DKD, rank 43/17,578 genes). While little is 
known about the gene, it encodes one of the cytochrome 
P450 proteins, which are involved in the synthesis of 
cholesterol, steroids, and other lipids and, importantly, 
metabolize most of the drugs and can cause toxic drug-
drug interactions, e.g., with the statins [84].

It is of note that 460 of the study participants had DKD 
at the time of their lipid measurement; 239 of these had 
end-stage renal disease. This can affect the serum lipid 
concentrations, as DKD [34], and chronic kidney dis-
ease (CKD) in general, is associated with lipid concentra-
tions. In particular, CKD is associated with low HDLC 
and elevated triglycerides due to delayed catabolism of 
TRLs [85]. In patients with nephrotic syndrome, serum 
VLDL cholesterol, IDL cholesterol, and triglyceride levels 
are further increased, e.g., due to impaired urinary clear-
ance, acquired hepatic LDL receptor dysfunction [86], 
and increased biosynthesis [87]. Also the lipoprotein par-
ticle composition is altered in CKD, including elevated 
apoC-III levels [88], also seen among the FinnDiane par-
ticipants with DKD [82]. This may have contributed posi-
tively to our capacity to detect associations for apoC-III 
and other lipid variables, but may also have confounded 
some associations.

One limitation of this study is the lack of replication in 
other type 1 diabetes studies. We have attempted repli-
cation of the findings in individuals with type 1 diabetes 
using our GWAS data and internal replication between 
the WES and WGS gene aggregate findings, but we 
note that these data sets have limitations for replication. 
While some of the observed associations may be specific 
to individuals with diabetes, e.g., through disturbances 
in the insulin signalling, we hypothesize that many of 
the associations observed in this high-risk population 
may be generalized to the wider population, as many of 
the single-variant and gene-level findings were nomi-
nally replicated in the general population data sets. On 
the contrary, lack of replication in the general population 
can indicate either a false positive finding, specificity to 
(type 1) diabetes, or lack of statistical power for replica-
tion, e.g., due to lower variant frequency in non-Finnish 
populations, and thus, we cannot elucidate whether these 
associations are specific to diabetes.

It is of note that the significance thresholds were only 
adjusted for the number of studied variants or genes, not 
for the number of phenotypes. After additional correc-
tion for 12 estimated independent phenotypes obtained 
from the PCA, only the LIPC gene aggregate associa-
tion with apoA1 concentrations would remain significant 
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(p<2.4×10−7); if considering only the number of genes 
with the required cumulative MAC of ≥5, also TRMT5 
and DEFT1P would remain significant after correction 
for the number of genes and 12 independent phenotypes. 
Finally, the number of individuals in the study remains 
moderate, with limited statistical power. Post hoc power 
calculations indicated that we had 65% power to detect the 
lead association on the LIPC gene with exome-wide signif-
icance; we had only moderate power to detect associations 
for low-frequency variants with smaller effect size. Nev-
ertheless, we were able to identify multiple novel genetic 
associations, especially with the gene aggregate tests that 
increase the statistical power. Of note, many of the identi-
fied variants were markedly enriched in the Finnish popu-
lation, e.g., the 80-fold enriched GTF3C5 PAVs, providing 
one potential explanation why these variants have not 
been detected in earlier studies. It is of note that many pre-
vious, larger studies were either based on chip genotyping 
[8, 32] or included only the standard clinical lipid meas-
urements such as total cholesterol, LDLC, HDLC, and tri-
glyceride concentrations [13, 32]. While limited evidence 
of replication was found for the single-variant associations 
in the FinnDiane GWAS data, many of the identified PAVs 
or genes were associated with relevant metabolic traits and 
clinical endpoints in larger external data sets.

Conclusions
This study represents the first comprehensive analysis of 
PAVs associated with detailed lipid, apolipoprotein, and 
lipoprotein phenotypes in individuals with type 1 diabetes. 
We identified both novel variant associations in known 
lipid genes, as well as novel genes implicated in lipopro-
tein metabolism. Previous studies suggest that apoC-III is 
an important, independent risk factor for CVD. While we 
identified a seven amino acid deletion in RBM47 associ-
ated with lower apoC-III concentrations, further studies 
are needed to elucidate the biological mechanism that it 
exerts on the apolipoprotein concentrations.
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