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Abstract 

 

Background  Chronic kidney disease (CKD) shows different clinical features in type 1 

(T1D) and type 2 diabetes (T2D).  Metabolomics have recently provided useful contribution to 

the identification of biomarkers of CKD progression in either form of the disease.  However, no 

studies have so far compared plasma metabolomics between T1D and T2D in order to identify 

differential signatures of progression of eGFR decline.  

Methods  We used two large cohorts of T1D (from Finland) and T2D (from Italy) patients 

followed up to seven and three years, respectively.  In both groups, progression was defined as 

the top quartile of yearly decline in eGFR.  Pooled data from the two groups were analysed by 

univariate and bivariate random forest (RF), and confirmed by bivariate partial least squares 

(PLS) analysis, the response variables being type of diabetes and eGFR progression. 

Results  In progressors, yearly eGFR loss was significantly larger in T2D (-5.3[3.0] ml.min-

1.1.73m-2.yr-1) than T1D (-3.7[3.1], median[IQR], p=0.018).  Out of several hundreds, bivariate 

RF extracted 22 metabolites associated with diabetes type (all higher in T1D than T2D except 

for 5-methylthioadenosine, pyruvate and ß-hydroxypyruvate.) and 13 molecules associated with 

eGFR progression (all higher in progressors than non-progressors except for sphyngomyelin).  

Three of the selected metabolites (histidylphenylalanine, leucylphenylalanine, 

tryptophylasparagine) showed a significant interaction between disease type and progression.  

Only 8 metabolites were common to both bivariate RF and PLS.   

Conclusions  Identification of metabolomic signatures of CKD progression is partially 

dependent on the statistical model.  Dual analysis identified molecules specifically associated 

with progressive renal impairment in both T1D and T2D. 
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What is already known about this subject:  

 

• Diabetic kidney disease impairs survival in type 1 and type 2 diabetes, and strategies to 

better identify, target, and treat people at risk of progressing to end-stage renal disease 

are an urgent need. 

 

• Metabolomics is potentially useful for diagnosis, patient stratification and monitoring of 

therapeutic responses.  A small group of metabolites as good markers of rapid GFR 

decline or progression toward albuminuria (or both) have been recently identified.  

 

• No studies have, so far, compared metabolites as biomarkers of chronic renal disease in 

individuals with type 1 and type 2 diabetes. 

 

 

What this study adds: 

 

• In the attempt to identify differential metabolomic signatures of disease progression 

between type 1 or type 2 diabetes by using the same analytical platform and outcome 

variable, i.e., the decline in eGFR, we found that the identification of associated 

metabolites partially depends on the statistical method of analysis. 

 

• Out of several hundreds of metabolites, three (histidylphenylalanine, 

leucylphenylalanine, tryptophylasparagine) showed a significant interaction between 

disease type and progression of renal damage. 

 

 

What impact this may have on practice or policy:  

 

• To sharpen data interpretation, identification of metabolomic signatures of chronic 

kidney disease progression in diabetes should be validated by multiple statistical 

approaches.  

 

Keywords: metabolomics; type 1 diabetes; type 2 diabetes; nephropathy; GFR 
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Introduction 

 

 

Chronic kidney disease (CKD) is a major health burden in people with diabetes as its 

presence accelerates the physiologic, age-dependent decline in glomerular filtration rate (GFR).  

Renal impairment is also characterized by increased all-cause and cardiovascular (CVD) 

mortality and morbidity [1-3].  CVD mortality is at least 8-10-fold higher in patients with CKD 

than in the general population, and has not improved substantially in the past two decades.  The 

alarming rise in the prevalence of both type 1 (T1D) and type 2 diabetes (T2D) amplifies the 

problem, calling for strategies to better identify, target, and treat people at risk of progressing to 

end-stage renal disease (ESRD) [4,5].  Despite the epidemiological relevance of the phenomenon 

and its large economic impact [6], limited therapeutic options are currently available to slow the 

progression of CKD in either T1D or T2D individuals; this is also due to the lack of suitable 

approaches for the early detection of renal damage.  Age, gender, estimated GFR (eGFR) and 

albuminuria, the currently used markers to evaluate kidney function [7,8], lack sensitivity and 

specificity, and CKD often goes undetected until substantial renal injury has occurred.  

Therefore, a strong investigational effort has been made in the last decade in the search of 

molecules capable of more accurately identifying patients in whom clinical intervention is more 

likely to be effective.  

Advances in laboratory technologies in the past decade have generated a rich panel of 

potential biomarkers of renal damage in diabetes [9,10]; randomized clinical trials are validating 

some of them, in the prospect of personalized medicine [11].  One of the most fruitful 

approaches is metabolomics, which can select and quantify small molecules linked with 

physiological homeostasis and gene-environment interactions and potentially useful for 

diagnosis, patient stratification, and monitoring of therapeutic responses.  In the last five years, 

studies in T1D and T2D have recognized a relatively small group of metabolites as good 
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markers of rapid GFR decline or progression toward albuminuria (or both); some of these 

metabolites have received confirmation by multiple studies [12-14]. 

However, previous studies have used either proteinuria or GFR as the response variable 

[15,16], and markers have been screened in the plasma or urine [14,17].  In addition, no studies 

have attempted to distinguish CKD biomarkers for T1D vs T2D despite the well-established 

notion that CKD in T1D is predominantly diabetic nephropathy proper (with chronic 

hyperglycemia as the main pathogenetic factor) whereas CKD in T2D is a case mix of diabetic 

nephropathy, vascular and interstitial kidney disease [18].  This heterogeneity of approaches has 

prompted us to carry out the present longitudinal study, in which matrix (plasma), response 

variable (eGFR), and metabolomic platform were the same in relatively large groups of T1D and 

T2D patients.  The specific question asked was: are there metabolites that reliably differentiate 

CKD progression in T1D vs T2D?   

 

Subjects and Methods 

 

Patients  The study population consisted of a cohort of individuals with T1D and one of 

patients with T2D.  The databases analyzed in the present manuscript have been previously used 

separately to explore the impact of albuminuria in type 2 or type 1 diabetes [13,19].  T1D 

patients were selected from the Finnish Diabetic Nephropathy Study Group (FinnDiane) [20].  

T1D was defined as age at onset of diabetes below 40 years and insulin treatment initiated within 

one year of diagnosis.  Data on recruitment (completed in 2004) and clinical characterization of 

patients have been presented in detail elsewhere [9,19].  Inclusion criteria were a normal 

albumin excretion rate <30 mg/day, an eGFR above 60 ml.min-1.1.73m-2 at baseline, and 

available follow-up data on kidney status.  Median follow up in these patients was 7.1 years 

[19].  The study protocol was approved by Ethics Committees of the Helsinki and Uusimaa 

Hospital districts as well as by the local ethics committees at each FinnDiane participating 



 6 

center, and all patients signed a written informed consent.  The study was performed in 

accordance with the Declaration of Helsinki.  

 Type 2 patients were recruited from two Italian outpatient clinics in 2011. Exclusion 

criteria were dialysis or transplantation, an eGFR below 30 ml.min-1.1.73m2, liver disease and 

cancer.  Follow up in these patients was 3 years [13].  The study protocol was approved by the 

respective Institutional Ethics Committees; patients signed an informed consent.  All subjects 

volunteered to provide a fasting serum sample; other aliquots were collected for routine 

analyses.  All samples were labeled with a blinded code and processed anonymously. 

In each subject, the yearly change in eGFR (in ml.min-1.1.73m-2.yr-1) was calculated as the 

difference in eGFR between follow up and baseline divided by the duration of follow up.  

Separately in each cohort, progression was defined as a change in eGFR falling into the top 

quartile of its distribution.  The respective cutoff was an eGFR drop ≥7.0 ml.min-1.1.73m-2.yr-1 in 

T2D patients, and one of 5.9 ml.min-1.1.73m-2.yr-1 in T1D subjects.  

Laboratory measurements  Plasma glucose, serum creatinine and HbA1c concentrations 

were measured by standard methods.  eGFR was calculated by the CKD-EPI formula.   

Sample Preparation  Samples from both cohorts were stored at -20°C and processed 

according to previously published methods [9,19].  Briefly, preparation was conducted using an 

aqueous methanol extraction process to remove the protein fraction while allowing maximum 

recovery of small molecules.  The extract was divided into four fractions: one for analysis by 

UPLC/MS/MS (positive mode), one for UPLC/MS/MS (negative mode), one for GC/MS, and 

one for backup.  After removal of the organic solvent by a TurboVap® (Zymark), samples were 

frozen and dried under vacuum and then prepared for the appropriate instrument (UPLC/MS/MS 

or GC/MS).   

Ultrahigh performance liquid chromatography/Mass Spectroscopy  The LC/MS portion of 

the platform was based on a Waters ACQUITY ultra-performance liquid chromatography 

(UPLC) and a Thermo-Finnigan linear trap quadrupole (LTQ) mass spectrometer, consisting of 



 7 

an electrospray ionization (ESI) source and linear ion-trap (LIT) mass analyzer.  Dried sample 

extracts were reconstituted in acidic or basic LC-compatible solvents.  One aliquot was analyzed 

using acidic positive ion optimised conditions and the other using basic negative ion optimised 

conditions in two independent injections using different columns.  The MS analysis alternated 

between MS and data-dependent MS2 scans using dynamic exclusion.  Raw data files are 

archived and extracted as described below. 

Gas chromatography/Mass Spectroscopy  Samples destined for GC/MS analysis, samples 

were re-dried under vacuum desiccation and derivatized under dried nitrogen.  Samples were 

analysed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer 

using electron impact ionization.  The instrument was daily tuned and calibrated for mass 

resolution and mass accuracy.  The information output from the raw data files was automatically 

extracted as discussed below. 

Data extraction and compound identification  Raw data were extracted, peak-identified and 

processed using Metabolon’s hardware and software [19].  Briefly, to improve QA/QC, extra 

samples were included for analyses every day.  The samples were taken from a pool of well-

studied and characterized human sera.  Test samples were randomly distributed during the run, 

and QC samples were equally spaced between them.  A selection QC compounds was carefully 

chosen not to interfere with the measurement of the test compounds, and added to every sample 

for chromatographic alignment.  Instrument variability was determined by calculating the 

median relative standard deviation (RSD) for the standards that were added to each sample prior 

to injection into the mass spectrometers.  Overall process variability was determined by 

calculating the median RSD for all endogenous metabolites (i.e., non-instrument standards) 

present in 100% of the pooled matrix samples.  Compounds were identified by comparison to 

library entries of purified standards or recurrent unknown entities.  Biochemical identification is 

based on three criteria: retention index within a narrow RI window of the proposed 

identification, nominal mass match to the library +/- 0.2 amu, and MS/MS forward and reverse 
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scores between the experimental data and authentic standards; these scores are based on a 

comparison of the ions present in the experimental spectrum to the ions present in the library 

spectrum.  Identification of known chemical entities was based on comparison to library entries 

of purified standards.  Missing values (if any) were imputed to the lowest measured value and 

metabolite data are scaled proportionately to a median of 1. 

Statistical analysis  Metabolite data are presented as median and [interquartile range, IQR].  

Pooled data from the two patient groups were first analysed by random forest (RF) [21].  Using 

the R “VSURF” package, two separate univariate RF analyses were carried out, one with type of 

diabetes (T1D vs T2D) and the other with progression (progressors vs non-progressors) as the 

response variable; for either analysis, all measured metabolites were the explanatory variables.  

The Gini score and the mean decreases in classification accuracy were chosen to measure 

variable importance; a cutoff value of ≥1 was set for Gini score.  Subsequently, using the R 

“random Forest SRC” package, a bivariate RF analysis was performed on both response 

variables, i.e., diabetes type and progression, with all metabolites as explanatory variables.    

As confirmatory analysis, data were also analyzed by bivariate partial least squares (PLS) in 

order to determine the robustness of RF in detecting the most important metabolites.  The 

conventional VIP (variable importance in projection) score was used for ranking. 

Groups (T1D and T2D cohorts) were compared using Wilcoxon test.  For metabolites 

identified by the bivariate RF and/or PLS, group comparisons across diabetes type and 

progression were carried out by a 2-way ANOVA following log-transformation of the variables; 

correction for multiple testing was applied systematically.  Multivariate logistic regression with 

a stepwise selection method was used to test the association of CKD progression – as the 

response variable – with top metabolites plus selected clinical characteristics; results are reported 

as odds ratio (OR) and 95% confidence intervals (95% CI).  R and SPSS-IBM for Mac Os X 

software were used; the statistical significance threshold level was set at p<0.05. 
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Results 

 

The clinical phenotype of the two patient cohorts was as expected: T1D patients were 

younger and leaner, with longer disease duration, lower BP and higher eGFR values at baseline 

(Table S1).  Of note is that HbA1c was significantly higher in progressors than non-progressors 

in both groups. 

Changes in yearly eGFR were -0.7 [2.3] and -1.3 [3.3] ml.min-1.1.73m-2.yr-1 in T1D and 

T2D, respectively (p=0.0043).  In progressors, yearly eGFR loss was significantly larger in T2D 

than T1D, presumably on account of their higher age and BP and the presence of 

microalbuminuria in almost half of them.  To account for differences in baseline eGFR between 

T1D and T2D, the yearly change in eGFR was also calculated as a percent change from baseline.  

As shown in Table 1, the differences between progressors and non-progressors across diabetes 

type were virtually identical for absolute and percent eGFR changes; 88.5% of subjects in the 

top quartile of absolute eGFR changes were also in the top quartile of percent eGFR changes (r2 

= 0.69, p<0.0001) (Table 1).   

With diabetes type as the response variable, the univariate RF extracted 13 associated 

metabolites, all known molecules; of note, with the exception of 5-methylthioadenosine and ß-

hydroxypyruvate, which were higher in T2D than T1D, all the other metabolites were higher in 

T1D than T2D (Table S2).  With CKD progression as the response variable, the univariate RF 

detected 11 associated variables (8 known and 3 unknown), all of which – except for 

theophylline – were higher in progressors than non-progressors (Table S3).  The metabolites 

identified by the two univariate RF’s were different. 

The bivariate RF analysis using both responses – diabetes type and progression – selected 

35 metabolites, 32 known and 3 unknown, of which 20 (57%) were also detected by one or the 

other univariate RF (Figure 1).  Signal levels and group comparisons of the known metabolites 

are given in Table 2.   
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The bivariate PLS, utilizing the same responses and a cutoff of 1.5 for VIP, screened 14 

relevant molecules (13 known), of which 8 (57 %) were also identified by the bivariate RF; 

Table 3 reports their concentrations across groups.  Overall, 8 metabolites were common to both 

bivariate analyses (shaded rows in Tables 2&3). 

When the bivariate random forest analysis was run on normoalbuminuric subjects only, 

there was a large overlap of ‘hits’ between the whole T2D cohort and the normoalbuminuric 

T2D subset (Table S4).   

In a multivariate logistic regression model with CKD progression as the dependent variable 

and the 13 metabolites selected by the bivariate RF as the independent variables, age (OR=2.5; 

95% CI:1.6-3.9 per 1 SD) and baseline eGFR (OR=3.0; 95% CI:1.9-4.7) – but not gender or 

HbA1c – were also significant covariates in the combined cohorts along with plasma levels of 

glycerol, heptanoate, sphingomyelin, erythronate and pyroglutamylvaline (in that order).  

Running the same model in T2D data alone (T1D patients were all normoalbuminuric), female 

gender (OR=2.9; 95% CI:1.3-6.5) and the baseline albumin-to-creatinine ratio (OR=1.7; 95% 

CI:1.1-2.7 per 1 SD) – but not age or HbA1c – were significant covariates.  It is of interest that in 

these models including the clinical parameters type of diabetes was not a significant covariate. 

 

Discussion 

 

The primary aim of the present work was to identify differential metabolomic signatures of 

disease progression between patients with T1D or T2D by using the same analytical platform 

and outcome variable, i.e., the decline in eGFR.  However, the first finding emerging from the 

data is that the identification of associated metabolites is dependent on the statistical method of 

analysis: among the 4 sets of metabolites detected using different methods (2 univariate RF’s, 

bivariate RF, bivariate PLS) there was a partial discrepancy both between the bivariate and the 

univariate RF’s and between the bivariate RF and PLS.  Furthermore, bivariate RF ranked 35 

molecules while the PLS procedure ranked only 14.  This is explained, at least in part, by the 
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sensitivity of the methods to select statistical predictors based on standard but user-defined 

cutoffs for the respective indices, i.e., a Gini index ≥1 for RF and a VIP ≥1.5 for PLS.  Different 

cutoffs would yield different numbers of predictors and overlap patterns.  Both RF and PLS 

models scale well on large numbers of metabolite data compared to sample size (in the present 

work, 547 metabolites and 462 patients).  RF has many interesting characteristics, for example, it 

is non-parametric, hard to over-train, robust to outliers and fast to train.  PLS, being a dimension 

reduction method, is less liable than RF to collinearity [22]. 

Running data with both models, as was done here, increases confidence in the selected 

predictors.  In our patient material, 12 out of the 13 biomarkers associated with T1D vs T2D in 

univariate RF were also detected by the bivariate RF, and 7 out of the 8 known metabolites 

associated with CKD progression in univariate RF were also detected by the bivariate RF.  Even 

the overlap between bivariate RF and PLS was reasonable, as 8 out of 13 known metabolites 

were identified by both procedures. 

Focusing on the plot of Gini indices from the bivariate RF (Figure 1), while some lipid 

molecules were selectively increased (2-hydroxyoctanoate, palmitic amide) or decreased 

(linoleamide) in T1D progressors, there appeared to be more metabolite differences by diabetes 

type than by CKD progression.  This suggests that age, BMI and other differences (Table 1) 

between T1D and T2D at the time of sample collection have a greater impact on the 

metabolomic signature than the initial metabolic changes predicting loss of eGFR seven to three 

years later.  This is indirectly confirmed by the logistic regression analyses testing the 

association of hit metabolites with CKD progression, where adding the main clinical variables 

(gender, age, BMI, HbA1c, baseline eGFR and the albumin-to-creatinine ratio) was statistically 

equivalent to using type of diabetes as a lumped nominal variable.  Nevertheless, bivariate RF 

also selected seven metabolites (erythyronate, gluconate, glycerol, heptanoate, 

hexanoylcarnitine, sphingomyelin, and xanthine) primarily associated with CKD progression but 

not with diabetes type (Table 2).  Hexanoylcarnitine is a medium-chain acylcarnitine; 
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acylcarnitines are products of fatty acid oxidation that have been suggested to cause insulin 

resistance [23].  In a previous study of 123 mass spectrometry-derived serum metabolites 

measured in 409 individuals with T2D, several short acylcarnitines were elevated in participants 

with CKD [24].  Our findings support this observation and extend it to T1D.  Furthermore, in 

our data the lower levels of sphingomyelin, which hydrolyzes to ceramide during the execution 

phase of apoptosis [25], may reflect ongoing apoptotic processes marked by elevated tissue 

ceramide levels [24].  Interestingly, among the other metabolites selected for CKD progression 

in the bivariate RF, glycerol is used to induce renal injury in rodent models of rhabdomyolysis 

[26].  Epidemiological studies found an association of triglycerides with diabetic nephropathy 

[27]; in addition, fenofibrate, alone or combined with statins, slowed down the decline in renal 

function [28], though these effects were not related to improvements in triglycerides or HDL-

cholesterol levels.  Cross-sectional analysis of the large RIACE cohort showed that 

hypertriglyceridemia is associated with renal, but not retinal, complications in subjects with T2D 

[29].  Raised plasma and urine xanthine levels can lead to a rare condition called xanthine 

nephropathy [30].  

  In the bivariate RF analysis, the signal intensity of three of the selected metabolites 

(histidylphenylalanine, leucylphenylalanine, tryptophylasparagine) showed a significant 

interaction between disease and CKD progression.  Histidylphenylalanine, higher in T1D than 

T2D and higher in CKD progressors among T1D, is a competitive inhibitor of histidine 

decarboxylase, the enzyme responsible for histamine formation.  Histamine has roles in allergy, 

inflammation and infection, and has also been linked with immune responses [31,32].  Recent 

work has shown that myeloid cells highly expressing histidine decarboxylase might promote 

foam cell formation and accelerate atherosclerosis [33].  Its lack prevents the onset of diabetes in 

the NOD mouse [34]; this is important in the light of the role of mast cells, which might 

infiltrate pancreatic islets in T1D [35].  Histidine decarboxylase has never before been connected 

with the known pathogenetic mechanisms of nephropathy, and therefore represents an interesting 
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target for further studies.  

Another metabolite, leucylphenylalanine, showed the same pattern of changes as 

histidylphenylalanine.  This is a neutral dipeptide, whose biological meaning is, so far as we 

know, obscure.  Its distribution in biological fluid is large, and it has been reported in 

metabolomics in relation to the presence of obesity [36].  Intriguingly, these two metabolites are 

chemically similar (they both derive from phenylalanine). The kidney plays a major role in the 

uptake of phenylalanine and its hydroxylation and release as tyrosine.  In CKD, the conversion 

of phenylalanine to tyrosine and tyrosine release from the kidney are both impaired; moreover, 

plasma tyrosine to phenylalanine ratio has been found to be reduced in advanced CKD [37].  In 

our data, the tyrosine-to-phenylalanine ratio also was lower in progressors than non-progressors 

(0.96 [0.28] vs 1.00 [0.27], p<0.04).  As a mere speculation, the oxidation of these amino acids, 

forming nitrotyrosine and oxidation products of phenylalanine, may cause adverse metabolic or 

toxic effects in CKD patients.  

The third discriminating metabolite is tryptophylasparagine, much higher in T1D, and again 

associated with CKD progression only in T1D.  This is a dypeptide derived from protein 

breakdown, apparently never identified before in human tissues or fluids; its biological meaning 

is unknown.  

Of interest is the finding of raised ß-hydroxypyruvate signal levels in T2D. This metabolite 

derives, at least in part, from serine metabolism, and has been found to be increased in 

proportion to hyperglycemia in T2D patients and to participate as a potential causative factor in 

the disease development by reducing the activity of the pancreatic enteric neuronal pathway 

[38].  In our T2D patients, ß-hydroxybutyrate was strongly correlated with fasting plasma 

glucose concentrations (r=0.58, p<0.0001). 

Finally, in our series glycerol, urate, gluconate and heptanoate were consistently associated 

with the progression of renal damage.  Urate is a well-established marker of diabetic and 

nondiabetic CKD [39,40]; however, its role as a determinant of renal impairment in T1D  has 
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been recently questioned [41]. Gluconate is formed from gluconic acid and arises from glucose 

oxidation; it is not known to be involved in any pathological process. 

Over the last five years, metabolomics as part of a systems biology approach [42,43] has 

made meaningful contributions to the knowledge in this field, with cross-sectional case-control 

studies and prospective cohort observations in T1D and T2D [12,14,44].  By this approach, 

acylcarnitines, acylglycines and metabolites related to tryptophan metabolism have emerged as 

discriminants in both types of disease [12,14,20].  Sharma et al. [17] reported differential 

expression of several urinary metabolites related to mitochondrial metabolism, suggesting a 

global impairment of mitochondrial activity in diabetes and CKD.  To our knowledge, the 

present study is the first directly comparing prospective results obtained in Caucasian T1D and 

T2D individuals using an unbiased statistical definition of renal functional loss (upper quartile of 

eGFR changes over time).  Additional strengths are the size of the cohorts and the prospective 

design.  Furthermore, the T1D subjects were normoalbuminuric at baseline, and had well 

preserved renal function despite a long disease duration; thus, their metabolomic signature of 

eGFR loss likely reflected incipient nephropathy.  However, patients at a more advanced stage of 

CKD may show a different cluster of associated metabolites as the pathology of renal damage 

evolves.  Moreover, using urine metabolites or progression of proteinuria as the endpoint may 

also result in a different pattern of associations.  In fact, the current analysis did not select the 

same metabolites as our previous analyses in the same cohorts of T2D [13] and T1D patients 

[19], because the outcome phenotype was progression to microalbuminuria in the previous 

reports and decline in renal function in the present report.  Interestingly, among T1D subjects 

30% of CKD progressors had not developed albuminuria at follow up despite similar eGFR 

decline (-3.5 [1.91] ml.min-1.1.73m-2.yr-1) and follow-up time (7.6 [4.3] years) as the individuals 

who did progress to microalbuminuria (-3.9 [3.0] ml.min-1.1.73m-2.yr-1 and 6.7 [3.0] years, 

respectively). 

Our study has limitations.  The two cohorts were not prospective in design or 
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contemporaneous.  In addition, although the plasmas used for metabolomic analysis from both 

cohorts were never-thawed, and well frozen aliquots, confounding by calendar time, storage 

conditions, etc. is ineludible. 

In conclusion, dual, unbiased analysis of screening metabolomics identified molecules (and 

associated pathways) specifically associated with progressive renal dysfunction common to T1D 

and T2D, thereby possibly representing ‘pure’ diabetic nephropathy.  The findings can guide 

targeted metabolomics of those metabolites standing out as the most promising discriminants of 

functional decline in the kidneys of T1D and T2D patients.  
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Figure Legend 

 

Figure 1 – Metabolites detected by bivariate Random Forest; red symbols identify 

metabolites also detected by PLS. 
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Table 1 – Clinical characteristics.* 

 

 

T1D T2D 

p1 p2 p3 
Progressors 

(n=47) 

Non-Progr. 

(n=146) 

Progressors 

(n=74) 

Non-Progr. 

(n=195) 

Sex (% Male) 60 40 54 66 - ns - 

Age (years) 33 ± 12 34 ± 10 63 ± 7 62 ± 8 <0.0001 ns ns 

BMI (kg/m2) 25.1 ± 3.7 25.1 ± 3.2 29.9 ± 5.6 28.7 ± 4.8 <0.0001 ns ns 

Diabetes duration (years) 20 ± 11 21 ± 9 15 ± 10 12 ± 9 <0.0001 ns ns 

HbA1c (%) 9.3 ± 1.7 8.7 ± 1.5 7.4 ± 0.9 7.1 ± 0.8 <0.0001 0.0013 ns 

Systolic BP (mmHg) 128 ± 13 129 ± 14 145 ± 21 140 ± 17 <0.0001 ns ns 

Diastolic BP (mmHg) 80 ± 9 78 ± 10 78 ± 9 77 ± 9 ns ns ns 

Baseline eGFR (ml.min-1.1.73m-2) 114 ± 19 108 ± 16 89 ± 17 84 ± 20 <0.0001 0.0109 ns 

Change in eGFR (ml.min-1.1.73m-2.yr-1) -3.7 [3.1]  -0.3 [1.7] -5.3 [3.0] -0.7 [2.3] 0.0036 <0.0001 0.018 

Change in eGFR (%.yr-1) -3.2 [2.9] -0.3 [1.6] -6.1 [3.5] -0.9 [2.8] <0.0001 <0.0001 0.0003 

Normoalbuminuria at baseline (%)  100 100 53 69 <0.0001 - 0.028 

* entries are mean ± SD or median [interquartile range]; p1 = T1D vs T2D; p2 = progressors vs non-progr.; p3 = interaction of diabetes and 

progression.
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Table 2 – Metabolites selected by bivariate random forest (RF) analysis. 

Metabolite 
T1D T2D 

p1 p2 p3 
Progressor Non-Progr. Progressor Non-Progr. 

1,5-anhydroglucitol  0.309 [0.775] 0.614 [0.439] 0.279 [0.538] 0.510 [0.721] 0.050 ns ns 

2aminoheptanoic acid  1.071 [0.537] 0.975 [0.500] 1.093 [0.663] 0.981 [0.524] ns ns ns 

2-hydroxyoctanoate 1.094 [0.502] 0.972 [0.482] 0.501 [0.537] 0.416 [0.584] <0.001 ns ns 

2-hydroxystearate  1.068 [0.442] 0.985 [0.456] 1.035 [0.633] 0.998 [0.312] ns ns ns 

3-ethylphenylsulfate 1.176 [2.277] 0.941 [2.161] 0.259 [0.010] 0.257 [0.011] <0.001 ns ns 

4-acetylphenylsulfate 0.996 [0.930] 1.000 [0.701] 0.246 [0.558] 0.247 [0.647] <0.001 ns ns 

4-guanidinobutanoate 0.975 [0.279] 1.000 [0.346] 0.207 [0.010] 0.209 [0.012] <0.001 ns ns 

5-methylthioadenosine 0.546 [1.207] 0.238 [0.967] 0.852 [1.170] 0.733 [0.720] <0.001 0.036 ns 

Acetylcarnitine 0.882 [3.935] 0.861 [1.990] 1.001 [0.366] 0.994 [0.324] <0.001 ns ns 

Adipate 0.669 [1.083] 0.796 [1.087] 0.178 [0.361] 0.179 [0.020] <0.001 ns ns 

−CEHCglucuronide  1.031 [0.889] 0.948 [0.845] 0.130 [0.020] 0.132 [0.013] <0.001 ns ns 

ß-hydroxypyruvate 0.829 [1.085] 0.648 [0.860] 1.003 [0.511] 0.915 [0.508] <0.001 ns ns 

Erythronate 1.049 [0.273] 0.968 [0.232] 1.017 [0.314] 0.995 [0.329] ns 0.023 ns 

Gluconate  1.066 [0.684] 0.997 [0.533] 1.118 [0.415] 0.925 [0.491] ns 0.003 ns 

Glutamine 0.900 [0.973] 1.057 [1.521] 0.974 [0.255] 1.008 [0.244] 0.001 ns ns 

Glycerol  1.174 [0.674] 0.978 [0.445] 1.045 [0.428] 0.975 [0.328] ns 0.001 ns 

Heptanoate  1.062 [0.350] 0.992 [0.268] 1.041 [0.625] 0.922 [0.370] ns 0.001 ns 

Hexanoylcarnitine  1.193 [2.085] 0.993 [0.899] 0.998 [0.619] 0.996 [0.458] ns 0.050 ns 

Histidylalanine  1.205 [1.264] 0.992 [0.990] 0.248 [0.015] 0.244 [0.019] <0.001 0.038 ns 

Histidylphenylalanine  1.250 [1.982] 0.927 [1.458] 0.275 [0.070] 0.273 [0.015] <0.001 0.025 0.042 

Hyocholate 0.801 [0.829] 1.004 [1.171] 0.133 [0.761] 0.132 [0.779] <0.001 ns ns 

Inosine 1.044 [1.413] 

 

 

 

0.974 [1.524] 0.157 [0.807] 0.155 [0.521] <0.001 ns ns 

Leucylphenylalanine  1.367 [1.280] 0.912 [1.445] 0.293 [0.020] 0.291 [0.018] <0.001 0.004 0.007 

Linoleamide 0.770 [9.746] 0.954 [4.264] 0.023 [1.103] 0.024 [0.472] <0.001 ns ns 

Palmitic amide 1.000 [4.306] 0.967 [2.289] 0.089 [1.363] 0.046 [0.740] <0.001 ns ns 

Pyroglutamylvaline 1.115 [1.019] 0.976 [0.789] 0.689 [0.537] 0.589 [0.510] 0.010 0.020 ns 

Pyruvate 0.642 [1.057] 0.592 [0.827] 1.001 [0.445] 1.013 [0.215] <0.001 ns ns 

Sphingomyelin 1.059 [0.490] 0.982 [0.338] 1.069 [0.436] 0.977 [0.385] ns 0.001 ns 

Theophylline  0.979 [0.802] 0.998 [0.933] 0.758 [0.978] 0.994 [1.028] ns ns ns 

Tryptophylasparagine  1.241 [1.915] 0.921 [1.794] 0.298 [0.016] 0.297 [0.018] <0.001 0.005 0.003 

Xanthine 1.036 [0,756] 1.001 [0.542] 1.091 [0.900] 0.951 [0.453] ns 0.050 ns 

Xanthosine  1.008 [0.640] 1.000 [0.415] 0.359 [0.040] 0.357 [0.030] <0.001 ns ns 

* p1 for T1D vs T2D; p2  for progressors vs non-progressors; p3 for the interaction of diabetes and progression. 
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Table 3 – Metabolites selected by bivariate PLS.* 

 

 
T1D T2D 

p1 p2 p3 
Progressors Non-progr. Progressors Non-progr. 

2-hydroxyoctanoate 1.094 (0.502) 0.972 (0.482) 0.501 (0.537) 0.416 (0.584) <0.001 ns ns 

3-methylcatechol sulfate 0.762 (1.919) 0.912 (1.672) 0.375 (0.213) 0.376 (0.214) ns ns ns 

4-acetylphenylsulfate 0.996 (0.930) 1.000 (0.701) 0.246 (0.558) 0.247 (0.647) <0.001 ns ns 

Adipate 0.669 (1.083) 0.796 (1.087) 0.178 (0.361) 0.179 (0.020) <0.001 ns ns 

ß-hydroxypyruvate 0.829 (1.085) 0.648 (0.860) 1.003 (0.511) 0.915 (0.508) <0.001 ns ns 

Hyocholate 0.801 (0.829) 1.004 (1.171) 0.133 (0.761) 0.132 (0.779) <0.001 ns ns 

Palmitic amide 1.000 (4.306) 0.967 (2.289) 0.089 (1.363) 0.046 (0.740) <0.001 ns ns 

Phenylalanylarginine 0.751 (2.223) 1.000 (3.152) 0.873 (0.655) 0.915 (0.497) ns ns ns 

Pyroglutamylvaline 1.115 (1.019) 0.976 (0.789) 0.689 (0.537) 0.589 (0.510) 0.010 0.020 ns 

Pyruvate 0.642 (1.057) 0.592 (0.827) 1.001 (0.445) 1.013 (0.215) <0.001 ns ns 

Sarcosine 0.532 (0.709) 0.576 (0.719) 0.856 (0.547) 0.983 (0.650)  <0.001 ns ns 

Serotonin (5HT) 1.068 (1.131) 1.000 (1.081) 0.355 (0.497) 0.357 (0.590) <0.001 ns ns 

Stearamide 1.024 (1.238) 0.979 (1.035) 0.939 (1.033) 0.852 (0.739) 0.006 ns ns 

* p1 for T1D vs T2D; p2  for progressors vs non-progressors; p3 for the interaction of diabetes and progression 


