17 research outputs found

    Energy Efficient and Reliable Wireless Sensor Networks - An Extension to IEEE 802.15.4e

    Get PDF
    Collecting sensor data in industrial environments from up to some tenth of battery powered sensor nodes with sampling rates up to 100Hz requires energy aware protocols, which avoid collisions and long listening phases. The IEEE 802.15.4 standard focuses on energy aware wireless sensor networks (WSNs) and the Task Group 4e has published an amendment to fulfill up to 100 sensor value transmissions per second per sensor node (Low Latency Deterministic Network (LLDN) mode) to satisfy demands of factory automation. To improve the reliability of the data collection in the star topology of the LLDN mode, we propose a relay strategy, which can be performed within the LLDN schedule. Furthermore we propose an extension of the star topology to collect data from two-hop sensor nodes. The proposed Retransmission Mode enables power savings in the sensor node of more than 33%, while reducing the packet loss by up to 50%. To reach this performance, an optimum spatial distribution is necessary, which is discussed in detail

    European long-term field experiments : knowledge gained about alternative management practices

    No full text
    Alternative management practices such as no-tillage compared to conventional tillage are expected to recover or increase soil quality and productivity, even though all of these aspects are rarely studied together. Long-term field experiments (LTEs) enable analysis of alternative management practices over time. This study investigated a total of 251 European LTEs in which alternative management practices such as crop rotation, catch crops, cover crops/green manure, no-tillage, non-inversion tillage and organic fertilization were applied. Response ratios of indicators for soil quality, climate change and productivity between alternative and reference management practices were derived from a total of 260 publications. Both positive and negative effects of alternative management practices on the different indicators were shown and, as expected, no alternative management practice could comply with all objectives simultaneously. Productivity was hampered by non-inversion tillage, FYM amendments and incorporation of crop residues. SOC contents were increased significantly following organic fertilizers and non-inversion tillage. GHG emissions were increased by slurry application and incorporation of crop residues. Our study showed that alternative management practices beneficial to one group of indicators (e.g. organic fertilizers for biological soil quality indicators) are not necessarily beneficial to other indicators (e.g. increase of crop yields). We conclude that LTEs are valuable for finding ways forward in protecting European soils as well as finding evidence-based alternative management practices for the future; however, experiments should focus more on biological soil quality indicators as well as GHG emissions to enable better evaluation of trade-offs and mutual benefits of management practices
    corecore