56 research outputs found

    Deep extragalactic visible legacy survey (DEVILS): the emergence of bulges and decline of disc growth since z = 1

    Get PDF
    We present a complete structural analysis of the ellipticals (E), diffuse bulges (dB), compact bulges (cB), and discs (D) within a redshift range 0 \u3c z \u3c 1, and stellar mass log10(M*/M⊙) ≥ 9.5 volume-limited sample drawn from the combined DEVILS and HST-COSMOS region. We use the PROFIT code to profile over ∼35 000 galaxies for which visual classification into single or double component was pre-defined in Paper-I. Over this redshift range, we see a growth in the total stellar mass density (SMD) of a factor of 1.5. At all epochs we find that the dominant structure, contributing to the total SMD, is the disc, and holds a fairly constant share of ∼60 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∼60 per cent∼60 per cent of the total SMD from z = 0.8 to z = 0.2, dropping to ∼30 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∼30 per cent∼30 per cent at z = 0.0 (representing ∼33 per cent role= presentation style= box-sizing: border-box; margin: 0px; padding: 0px; border: 0px; font-variant: inherit; font-stretch: inherit; line-height: normal; font-family: inherit; vertical-align: baseline; display: inline; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative; \u3e∼33 per cent∼33 per cent decline in the total disc SMD). Other classes (E, dB, and cB) show steady growth in their numbers and integrated stellar mass densities. By number, the most dramatic change across the full mass range is in the growth of diffuse bulges. In terms of total SMD, the biggest gain is an increase in massive elliptical systems, rising from 20 per cent at z = 0.8 to equal that of discs at z = 0.0 (30 per cent) representing an absolute mass growth of a factor of 2.5. Overall, we see a clear picture of the emergence and growth of all three classes of spheroids over the past 8 Gyr, and infer that in the later half of the Universe’s timeline spheroid-forming processes and pathways (secular evolution, mass-accretion, and mergers) appear to dominate mass transformation over quiescent disc growth

    Deep Extragalactic VIsible Legacy Survey (DEVILS): Consistent multi-wavelength photometry for the DEVILS regions (COSMOS, XMMLSS & ECDFS)

    Full text link
    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is an ongoing high-completeness, deep spectroscopic survey of \sim60,000 galaxies to Y<<21.2 mag, over \sim6 deg2 in three well-studied deep extragalactic fields: D10 (COSMOS), D02 (XMM-LSS) and D03 (ECDFS). Numerous DEVILS projects all require consistent, uniformly-derived and state-of-the-art photometric data with which to measure galaxy properties. Existing photometric catalogues in these regions either use varied photometric measurement techniques for different facilities/wavelengths leading to inconsistencies, older imaging data and/or rely on source detection and photometry techniques with known problems. Here we use the ProFound image analysis package and state-of-the-art imaging datasets (including Subaru-HSC, VST-VOICE, VISTA-VIDEO and UltraVISTA-DR4) to derive matched-source photometry in 22 bands from the FUV to 500{\mu}m. This photometry is found to be consistent, or better, in colour-analysis to previous approaches using fixed-size apertures (which are specifically tuned to derive colours), but produces superior total source photometry, essential for the derivation of stellar masses, star-formation rates, star-formation histories, etc. Our photometric catalogue is described in detail and, after internal DEVILS team projects, will be publicly released for use by the broader scientific community.Comment: 33 pages, 22 figures, Accepted to MNRA

    Galaxy and Mass Assembly (GAMA): Variation in galaxy structure across the green valley

    Get PDF
    Using a sample of 472 local Universe (z \u3c 0.06) galaxies in the stellar mass range 10.25 \u3c logM*/M⊙ \u3c 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is subdivided into red, green, and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using Kilo- Degree Survey (KiDS) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Kilo-Degree Infrared Galaxy Survey (VIKING) derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells, and signs of merger activity for all systems. We find a significant surplus of rings (2.3s) and lenses (2.9s) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3s relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ~44 per cent which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ~20-30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0s surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley

    Galaxy and Mass Assembly (GAMA): Variation in Galaxy Structure Across the Green Valley

    Get PDF
    Using a sample of 472 local Universe (z < 0.06) galaxies in the stellar mass range 10.25 < log M*/MG < 10.75, we explore the variation in galaxy structure as a function of morphology and galaxy colour. Our sample of galaxies is sub-divided into red, green and blue colour groups and into elliptical and non-elliptical (disk-type) morphologies. Using KiDS and VIKING derived postage stamp images, a group of eight volunteers visually classified bars, rings, morphological lenses, tidal streams, shells and signs of merger activity for all systems. We find a significant surplus of rings (2.3σ) and lenses (2.9σ) in disk-type galaxies as they transition across the green valley. Combined, this implies a joint ring/lens green valley surplus significance of 3.3σ relative to equivalent disk-types within either the blue cloud or the red sequence. We recover a bar fraction of ∼ 44% which remains flat with colour, however, we find that the presence of a bar acts to modulate the incidence of rings and (to a lesser extent) lenses, with rings in barred disk-type galaxies more common by ∼ 20 − 30 percentage points relative to their unbarred counterparts, regardless of colour. Additionally, green valley disk-type galaxies with a bar exhibit a significant 3.0σ surplus of lenses relative to their blue/red analogues. The existence of such structures rules out violent transformative events as the primary end-of-life evolutionary mechanism, with a more passive scenario the favoured candidate for the majority of galaxies rapidly transitioning across the green valley. Key words: galaxies: elliptical and lenticular, cD – galaxies: spiral – galaxies: evo- lution – galaxies: star formation – galaxies: statistics – galaxies: structur

    Deep Extragalactic VIsible Legacy Survey (DEVILS):motivation, design, and target catalogue

    Get PDF
    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ∼60,000 galaxies to Y<21.2 mag, over ∼6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by ProFound. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night’s observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.PostprintPeer reviewe

    Galaxy And Mass Assembly (GAMA): Data Release 4 and the z < 0.1 total and z < 0.08 morphological galaxy stellar mass functions

    Get PDF
    In Galaxy And Mass Assembly Data Release 4 (GAMA DR4), we make available our full spectroscopic redshift sample. This includes 248 682 galaxy spectra, and, in combination with earlier surveys, results in 330 542 redshifts across five sky regions covering similar to 250 deg(2). The redshift density, is the highest available over such a sustained area, has exceptionally high completeness (95 per cent to r(KiDS) = 19.65 mag), and is well-suited for the study of galaxy mergers, galaxy groups, and the low redshift (z < 0.25) galaxy population. DR4 includes 32 value-added tables or Data Management Units (DMUs) that provide a number of measured and derived data products including GALEX, ESO KiDS, ESO VIKING, WISE, and HerschelSpace Observatory imaging. Within this release, we provide visual morphologies for 15 330 galaxies to z < 0.08, photometric redshift estimates for all 18 million objects to r(KiDS) similar to 25 mag, and stellar velocity dispersions for 111 830 galaxies. We conclude by deriving the total galaxy stellar mass function (GSMF) and its sub-division by morphological class (elliptical, compact-bulge and disc, diffuse-bulge and disc, and disc only). This extends our previous measurement of the total GSMF down to 10(6.75) M-circle dot h(70)(-2) and we find a total stellar mass density of rho(*) = (2.97 +/- 0.04) x 10(8) M-circle dot h(70) Mpc(-3) or Omega(*)=(2.17 +/- 0.03) x 10(-3) h(70)(-1). We conclude that at z < 0.1, the Universe has converted 4.9 +/- 0.1 per cent of the baryonic mass implied by big bang Nucleosynthesis into stars that are gravitationally bound within the galaxy population
    corecore