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Abstract

In this article, we unveil a new property of linear interference cancellation detectors. Particularly, we focus in this
study on the linear parallel interference cancellation (LPIC) detector and show that it exhibits a semi-convergence
property. The roots of the semi-convergence behavior of the LPIC detector are clarified and the necessary
conditions for its occurrence are determined. In addition, we show that the LPIC detector is in fact a regularization
scheme and that the stage index and the weighting factor are the regularization parameters. Consequently, a
stopping criterion based on the Morozov discrepancy rule is investigated and tested. Simulation results are
presented to support our theoretical findings.
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Introduction
Multi access interference (MAI) is the main limiting
factor for the capacity of the third generation cellular
system employing Code Division Multiple Access
(CDMA) scheme [1]. Similarly, MAI is also limiting
the capacity of optical networks using optical CDMA
(OCDMA) technology. Other types of interference
exist in other systems and may reduce capacity if not
mitigated properly, i.e., the inter-carrier interference
(ICI) in orthogonal frequency division multiple access
(OFDMA) and inter-antenna interference (IAI) in multi
input multi output (MIMO) systems, just to name a
few [1].
The effect of interference on wireless systems such

as 4G and beyond is expected to be more severe
due to the fact that the cells are expected to become
more condensed (i.e.,femto-cells) and the dimension
of wireless technologies keeps increasing from one
generation to another. For example, large MIMO
systems with tens to hundreds of transmit/receive
antennas are proposed for 4G and beyond in order
to achieve high spectral efficiencies [2,3]. To combat
these different types of interferences, multiuser
detectors (MUDs) have been developed [1]. MUDs
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are used mainly to reduce the effect of interference
in wireless/wired systems and hence to increase sys-
tem capacity and throughput. A large variety of
MUDs was developed in the literature [1]. Typically,
they range from simple but poor performance MUDs
to complex but excellent performance MUDs. The
challenge is usually to devise MUDs that tradeoff be-
tween low complexity and good performance. Appli-
cations of MUDs are diverse and in fact they have
been applied to various wireless/wired systems such
as MIMO-OFDM, SFBC-OFDM, OCDMA, just to
name a few [4-6].
The decorrelating and the linear minimum mean

square error (LMMSE) detectors are effective MUDs
to eliminate MAI. They are also important for non-
linear multistage detectors (decorrelating decision
feedback detector, LMMSE decision feedback de-
tector, etc.) because the latter usually take their ini-
tial estimates from the decorrelator/LMMSE detector.
Hence, reducing the computational complexity of the
decorrelator/LMMSE detector reduces the total com-
putational complexity of these nonlinear multistage
detectors.
One constraint that limits the implementation of the

decorrelator/LMMSE detector is its computational com-
plexity which is in the order of O(N3) [1], where N is the
dimension of the system’s cross-correlation matrix. For
example, N in mobile WIMAX (IEEE 802.16Wireless
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MAN standard) [7] can reach up to 2048,and therefore
to implement the decorrelator or the LMMSE detector,
an inversion of a 2048-by-2048 system’s cross-
correlation matrix is needed which imposes real chal-
lenges for its practical implementation. To overcome
this problem, linear interference cancellation (IC) struc-
tures such as the linear successive interference
cancellation (LSIC) and the linear parallel interference
cancellation (LPIC) detectors, are introduced to approxi-
mate the decorrelator/LMMSE detector but with much
less computational complexity O(N2) [8-10].
An important phenomenon that was noticed in the lit-

erature of linear IC detectors is their semi-convergence
behavior, i.e., the best Bit Error Rate (BER) is obtained
prior to convergence. This phenomenon was noticed
first in [11-15], and recently in [16], and it seems to be a
common feature in most linear IC’s if some conditions
are met. However, no study has been yet carried out to
explain the roots of this phenomenon and to devise ne-
cessary conditions for its occurrence. This study is
needed to facilitate the development of appropriate stop-
ping rules for terminating the linear IC detector’s itera-
tions at the best BER performance before noise
enhancement gets pronounced due to convergence to
the decorrelator detector’s solution.
The contributions of this study are twofold: first

we explain the rationale behind the semi-convergence
behavior of the LPIC detector and derive necessary
conditions for the occurrence of such a behavior. Spe-
cifically, we show that the LPIC detector exhibits a
spectral filtering property where it attenuates solution
components pertaining to small singular values of the
system matrix and retains solution components per-
taining to large singular values of the system matrix.
Second, we exploit this property for the purpose of
avoiding noise enhancement by early stopping the LPIC
detector’s iterations. Towards that objective, we investi-
gate a stopping rule based on the Morozov discrepancy
principle [17]. The effectiveness of the proposed stop-
ping rule is examined and extensively tested through
simulations.
This article is organized as follows: in Section 2, the

system model used in this study is briefly described. In
Section 3, the naïve solution is analyzed and the com-
mon approaches used to overcome the effect of noise
enhancement are detailed. Section 4 describes the struc-
ture of the LPIC detector, presents the proof for its spec-
tral filtering property, analyzes its semi-convergence
behavior and finally details the Morozov discrepancy
rule for early stopping of its iterations. Finally, Section 5
supports the theoretical findings by a number of simula-
tions and Section 6 concludes the article with some
recommendations and possible future extensions of this
study.
Notations
Throughout this article, the following notations are used.

� ∘ denotes the Schur product.
� � denotes the Kronecker product.
� 1N denotes a 1-by-N vector of ones.
� diag. denotes the diagonal operator.
� :T denotes the transpose operator.
� :H denotes the hermitian operator.
� :k k2 denotes the norm-2 operator.
� |.| denotes the absolute value.
� :† denotes the pseudo inverse.
� lim. denotes the limit operator.
� tr. denotes the trace operator.
� max. denotes the maximum operator.

System model
A generic communication system is expressed in vec-
tor–matrix form as

r mð Þ ¼ ~~Ψ mð Þb mð Þ þ n mð Þ ð1Þ

where r is the received signal vector and ~~Ψ is the system
matrix and b is the vector of transmitted data symbols,
and finally n is the vector of independently and identi-
callydistributed additive white Gaussian noise (AWGN)
samples with zero-mean and variance ρ2.

The system matrix ~~Ψ differs from one communication
system to another, i.e., in a CDMA system it represents
the matrix of the spreading codes whereas in a MIMO-

OFDM system, the matrix ~~Ψ is in fact a combination of
two matrices: the matrix of channel coefficients and the
matrix of orthogonal IFFT subcarriers.
For illustration purposes, we consider the LPIC de-

tector in the context of mitigating the ICI due to the
misalignment of the carrier frequencies and the Doppler
shifts of different users in an OFDMA system. Specific-
ally, we consider a scenario of an uplink OFDMA system
where K users transmit simultaneously over a synchron-
ous Rayleigh fading channel using Quadrature Phase
Shift Keying. We consider in this study the effect of ICI
due to the misalignment of the carrier frequencies and
the Doppler shifts of different users and we neglect the
effect of ICI due to inter-symbol interference and inter-
block interference. This is justified by assuming a flat
fading channel for each subcarrier of each user and as-
suming that the users transmit synchronously; therefore,
it is reasonable to omit the cyclic prefix operation. This
is illustrated in Figure 1.
Two main subcarrier allocation schemes are com-

monly used in the literature. In the first one, known as
the block subcarrier allocation scheme, each user is
assigned a block of adjacent subcarriers whereas in the
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Figure 1 Typical uplink OFDMA channel.

Bentrcia and Alshebeili EURASIP Journal on Advances in Signal Processing 2012, 2012:145 Page 3 of 17
http://asp.eurasipjournals.com/content/2012/1/145
second one, known as interleaved subcarrier allocation
scheme, the total subcarriers are uniformly interleaved
across all users. In this study, and since we are dealing
with ICI, we consider the interleaved subcarrier alloca-
tion scheme because it is well known that this scheme
suffers more from ICI compared to the block subcarrier
allocation scheme [18].
An OFDM symbol consisting of Nu samples with sam-

pling time Tu where Nu is the total number of data sam-
ples is transmitted using N orthogonal subcarriers.
Without loss of generality, we assume that the total
number of subcarriers of the IFFT matrix Ψwith ele-

ments Ψnu;n ¼ 1ffiffiffiffiffi
Nu

p e
j2πnun
Nu , 1≤ nu ≤Nu and 1≤ n≤N is

divided equally among all users; therefore, the total
number of subcarriers per user is Nk=N/K.
The received signal is expressed in vector–matrix form as

r mð Þ ¼ ~ΨH mð ÞAb mð Þ þ n mð Þ
¼ ~~Ψ mð Þb mð Þ þ n mð Þ; ð2Þ

where ~Ψ isa combination of the IFFT and normal-
ized carrier frequency offset (NCFO) matrices as
follows: ~Ψ ¼ Ψ∘ 1Nk�Ε
� �

where Ε is the NCFO
matrix. The NCFO matrix is obtained as Ε ¼
ε1 ε2 ⋯½ εk ⋯ εK � where εk is given by εk ¼

e

j2πεk
Nu e

j2π2εk
Nu ⋯

�
e

j2πnuεk
Nu ⋯ e

j2πNuεk
Nu
�T and εk

is the NCFO of user k obtained as εk ¼ Δfk=Δf where Δf
is the subcarrier spacing. H(m) is the matrix of
Rayleigh fading coefficients at the mthOFDM symbol
where 1<m<M, and it is given by H mð Þ ¼
diag H1 mð Þ H2 mð Þ ⋯ Hnk mð Þ ⋯ HNk mð Þð Þ where
Hnk mð Þ ¼diag h1;nk mð Þ h2;nk mð Þ⋯ hk;nk mð Þ⋯hK ;nk mð Þð Þ .
Channel fading coefficients are obtained in practice
through channel estimation. Without loss of generality, we
assume throughout this article perfect knowledge of the
channel state information. A is the power weighting
matrix and it is used to scale the signals of different users
with different powers to simulate near–far scenarios. It
can be even used to weight the subcarriers of the same
user differently if needed. This matrix is given by A ¼
diag A1 A2 ⋯ Ank ⋯ ANkð Þ where Ank ¼
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diag a1;nk a2;nk ⋯ ak;nk ⋯ aK ;nkð Þ .b(m) is the

vector of transmitted symbols and it is formed as b mð Þ ¼
b1 mð Þ b2 mð Þ ⋯ bnk mð Þ ⋯ bNk mð Þ½ �T where
bk mð Þ¼ b1;nk mð Þ b2;nk mð Þ⋯ bk;nk mð Þ⋯bK ;nk mð Þ½ � . n(m)
is an N-length vector of independently and identically dis-
tributed additive white Gaussian distributed samples

with zero-mean and variance ρ2,and finally ~~Ψ mð Þ ¼
~ΨH mð ÞA is a combination of the IFFT, the NCFO,
the channel gain and power weighting matrices, respect-

ively. This matrix can be decomposed as ~~Ψ mð Þ¼
~~Ψ1 mð Þ~~Ψ2 mð Þ⋯ ~~Ψn mð Þ⋯ ~~ΨN mð Þ

h i
where ~~Ψn mð Þ is the

nth column of the matrix ~~Ψ mð Þ . For simplicity and con-
ciseness we drop the OFDM symbol index m in all subse-
quent equations.

The naïve solution and the noise
enhancement effect
The naïve solution or the decorrelator detector (some-
times known also as the zero forcing detector) is one of
the basic detectors that completely eliminates the inter-
ference and it can be formulated as a least square
minimization problem:

min
b2ℂK

r� ~~Ψb
��� ���2

2
ð3Þ

The solution to this optimization problem is the dec-
orrelator detector’s solution and it is given by

yDEC ¼ ~~Ψ
†
r¼ ~~ΨH ~~Ψ

� ��1 ~~ΨHr ð4Þ

The naïve solution for ill-conditioned systems tends to
amplify noise. To get more insight let us examine the
singular value decomposition (SVD) of the decorrelator
detector’s solution. Using the SVD, the system matrix ~~Ψ
can be factorized as

~~Ψ ¼ UΣVH ð5Þ
where U and V are both the N-by-N unitary matrices,
respectively, and Σ is an N-by-N diagonal matrix with
elements σn , 1 ≤ n ≤N. The N columns of U represent

the left singular vectors of ~~Ψ and the N columns of V

represent the right singular vectors of ~~Ψ and the N diag-

onal entries of Σ represent the singular values of ~~Ψ. We
assume without loss of generality that the singular values
are ordered from the largest to the smallest with indices
ranging from 1 to N. Consequently, the decorrelator
detector’s solution can be written in terms of the SVD of
~~Ψ as

yDEC ¼ ~~Ψ
†
r ¼ VΣ�1UHr ¼

XN
n¼1

uH
n r
σn

vn ð6Þ
and its norm is given by

yDEC
�� ��

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

uH
n r
σn

	 
2
s

ð7Þ

As it can be seen from the equation above, the norm of
yDEC will not be too large as long as uH

n r
�� �� < σn for large

n. This is known as the discrete Picard condition [19].

Discrete picard condition
A meaningful solution is obtained if the Fourier coeffi-
cients uH

n r decay to zero on average faster than the sin-
gular values σn.
It can be seen that if the discrete Picard condition is

not satisfied, the decorrelator’s solution goes unbounded.
This is specifically true for ill-conditioned system matri-
ces that tend to have many small singular values near
zero. Moreover, since the noise tends to reside in the
space spanned by singular vectors corresponding to sin-
gular values that are equal or less than the noise level,
then noise components corresponding to singular values
not satisfying the discrete Picard condition are magnified
and consequently result in the noise enhancement effect
observed in the decorrelator detector’s solution.
A typical scenario where an OFDMA system matrix

gets ill-conditioned is the case of large frequency offsets.
To illustrate this, the singular values of a system matrix
with 128 subcarriers and 64 users are plotted in Figure 2.
It can be seen that due to large values of the NCFO,
many singular values are close to zero and therefore, for
these singular values, there is a large chance that the
discrete Picard condition will not be satisfied. This is
illustrated in Figure 2 where the singular values, Fourier
coefficients, and their ratio are plotted.
By virtue of Figure 2, it is evident that the norm of the

decorrelator’s solution gets amplified if the singular
values are below a certain threshold [19] (<0.7 in our
case). All singular values below this threshold do not
satisfy the discrete Picard condition and therefore con-
tribute to the noise enhancement effect.
To combat this phenomenon, several regularization

techniques have been developed. The main idea behind
regularization is to filter out solution components per-
taining to small singular values, that is

yREG ¼
XN

n¼1
fn
uH
n r
σn

vn ¼ VFΣ�1UHr ð8Þ

where F is an N-by-N diagonal matrix with elements fn ,
known as filtering factors and should satisfy

fn ’ 1 if σn is large
0 if σn is small

; 1≤n≤N
�

ð9Þ

Hence, these factors tend to discard small singular

values of the system matrix ~~Ψ and retain large ones.
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Many regularization techniques exist in the literature
such as the truncated SVD, Tikhonov, etc.; however, due
to space limitation we refer the readers to [20] for more
information on these techniques. In the next section, we
show after a brief description of the LPIC detector that
it can be used as a regularization scheme with two
regularization parameters.

The LPICdetector
The LPIC detector is an effective scheme for the approxi-
mation of the decorrelator/LMMSE detector and it con-
sists of IC units arranged in a multistage structure as
shown in Figure 3. The internal structure of each IC unit
is illustrated in Figure 4. The vector of decision variables

of the pth stage, nth branch yp,n is first multiplied with ~~Ψn,
added to the vectors of decision variables of the other
branches, and then subtracted from the received signal r
to obtain a cleaned version of the received signal

r�PN
j¼1

~~Ψjyp;j
� �

where all users exhibit less mutual inter-

ference. The vector of decision variables of the (p+1)th

stage, nth branch yp+1,n is obtained by matched filtering

the cleaned signal with ~~Ψn , multiplying the result by a
weighting factor ω and finally adding the result to the vec-
tor of decision variables of the previous stage, that is

ypþ1;n ¼ yp;n þ ω~~Ψn
H r�

XN

j¼1
~~Ψjyp;j

� �
ð10Þ
The weighting factor ω is used to ensure convergence
of the LPIC detector. This process is repeated in a multi-
stage structure as shown in Figure 3.
If all N branches of the LPIC detector are considered,

then Equation (10) becomes

ypþ1 ¼ yp þ ωep ð11Þ

where ep ¼ ~~ΨH r� ~~Ψyp
� �

is the residual error. There-

fore, the vector of decision variables and residual error
signal can be written in closed form as [21]

ypþ1 ¼ ω
Xp
i¼0

I� ω~~ΨH ~~Ψ
� �i ~~ΨHr ¼ GH

p r ð12Þ

and

ep ¼ I� ω~~ΨH ~~Ψ
� �p

e0 ð13Þ

respectively, where e0 ¼ ~~ΨHr and Gp ¼ gp;1 gp;2⋯
h

⋯gp;n⋯gp;N � . This allows obtaining the average BER at
the pth stage as [21]

PbðpÞ ¼ 1
N

XN

n¼1

1

2N�1

X
allb
bn¼1

Q
gHp;n

~~Ψb

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gHp;ngp;n

q
0
B@

1
CA ð14Þ



Figure 3 Multi-stage structure of the LPIC detector.
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where Q(.) denotes the Q-function. Moreover, the LPIC
detector converges if

lim
p!1 ep ! 0 ð15Þ

which translates to the following condition

0 < ω <
2

maxλn
~~ΨH ~~Ψ

� � ; 1≤n≤N ð16Þ

where λn is the nth eigenvalue of the system cross-

correlation matrix ~~ΨH ~~Ψ.
Furthermore, it is easy to show that as the number of

stages tends to infinity the LPIC detector converges to
the decorrelator detector’s solution, that is

lim
p!1

ypþ1 ¼ lim
p!1

ω
PP

i¼0 I� ω~~ΨH ~~Ψ
� �i ~~ΨHr

¼ ω ω~~ΨH ~~Ψ
� ��1 ~~ΨHr ¼ ~~ΨH ~~Ψ

� ��1 ~~ΨHr

¼ ~~Ψ
†
r ð17Þ

Therefore, if the LPIC detector converges, it converges
to the decorrelator detector’s solution that suffers from
noise enhancement.
Spectral filtering property of the LPIC detector
In the following, we show that the LPIC detector exhi-
bits a spectral filtering property in the sense that it filters
some components of the solution while it retains others.
This important property can be exploited to develop a
new regularization scheme. To get more insight, we use

the SVD of the system matrix ~~Ψ to analyze the conver-
gence behavior of the LPIC detector. After some alge-
braic manipulations, Equation (12) can be written as
(see the Appendix for the proof ):

ypþ1 ¼ VF pþ 1;ωð ÞΣ�1UHr

¼
XN

n¼1
fn pþ 1;ωð Þu

H
n r
σn

vn ð18Þ

where F(p+ 1,ω) is a K-by-K diagonal matrix with ele-
ments fn(p+ 1,ω), known as filtering factors and are
given by

fn pþ 1;ωð Þ ¼ 1� 1� ωσ2
n

� �pþ1
; 1 ≤n≤N ð19Þ

These factors tend to attenuate small singular values

of the matrix ~~Ψ and retain large ones. Moreover, it is
clear from Equation (19) that the amount of filtering
introduced by the filtering matrix F(p+ 1,ω) can be
controlled through the stage index p and the weighting
factor ω; thus, the stage index and the weighting factor
act as regularization parameters for the LPIC detector.
Figure 5 depicts the filtering factor fn(p+ 1,ω) as a func-
tion of the singular value σn for different values of ω
and p.
It is clear that as the number of stages p gets larger,

more small singular values are included in the recon-
struction of the solution yp+1. However, if small singular
values that are below the noise level are involved and
the discrete Picard condition is not satisfied, the noise
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enhancement effect starts dominating the solution.
Therefore, the performance of the LPIC detector is
expected to improve at early stages but after a certain
number of stages the noise starts dominating the solu-
tion and deteriorating the performance of the LPIC
detector. This explains the phenomenon pointed out
in [11-16], which we call here the semi-convergence
property of the LPIC detector.
Similar to the stage index p, the weighting factor ω

also acts as a regularization factor where the perform-
ance of the LPIC detector is expected to improve for
small values of ω, but after a certain threshold the noise
enhancement effect starts taking place and the
performance of the LPIC detector worsens. However, in
addition to its regularization effect, the weighting factor
ω controls the convergence speed of the LPIC detector,
and therefore, the optimal value for this parameter has
to balance between high convergence speed and low
noise enhancement.
Nevertheless, in practice, the role of the weighting fac-

tor is confined to maximize the convergence speed and
not to control the amount of noise enhancement intro-
duced into the solution. Consequently, we also restrict
the role of the weighting factor to maximize the conver-
gence speed of the LPIC detector and use only the stage
index p as a regularization parameter.



Figure 5 Filter factors of the LPIC detector.
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Semi-convergence property of the LPIC detector
As mentioned earlier, the LPIC detector exhibits a
semi-convergence property where it reaches an average
BER that is better than that achieved at final conver-
gence. To get more insight, let us consider the error
between yp+1 and the vector of the transmitted data
symbols b, that is

b� ypþ1 ¼ b� VF pþ 1;ωð ÞΣ�1UHr
¼ b� VF pþ 1;ωð ÞΣ�1UH Ψ� bþ nð Þ
¼ b� VF pþ 1;ωð ÞVHbþ VF pþ 1;ωð ÞΣ�1UHn
¼ V I� F pþ 1;ωð Þð ÞVHb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

data error

þ VF pþ 1;ωð ÞΣ�1UHn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise error

ð20Þ

It can be seen that the error between yp+1 (which is an
estimate of the vector of the transmitted symbols b) and
the vector of the transmitted symbols b consists of two
components: the data error and the noise error. The
data error is caused by using a modified inverse of the

system cross-correlation matrix ~~ΨH ~~Ψ instead of the true
inverse, whereas the noise error is caused by the magni-
fied/filtered noise. Depending on the filtering matrix F
(p+ 1,ω), two cases can be distinguished:

� If F(p+ 1,ω) ⋍ I, the data error is small but the
noise error is large due to the noise enhancement
effect. The solution yp+1 is under-smoothed.
� If F(p+ 1,ω) ⋍ 0, the noise error is small but the
data error is large, and as a result the solution is
heavily damped. The solution yp+1 is over-smoothed.

So, a proper choice of the filtering matrix F(p+ 1,ω)
should balance between the data and noise errors. And
since the amount of filtering introduced by the filtering
matrix is proportional to the stage index p and the
weighting factor ω, a proper stopping rule needs to be
devised. The semi-convergence behavior of the LPIC de-
tector with respect to the stage index p is illustrated in
Figure 6 where the norm of the relative error defined by
b�ypþ1k k2

bk k2 is plotted against the stage index p for

several values of ω. Since 0 < ω < 2

maxλn
~~ΨH ~~Ψ

� � , and

maxλn
~~ΨH ~~Ψ

� �
≤tr ~~ΨH ~~Ψ

� �
, we vary ω asω ¼ β 2

tr ~~ΨH ~~Ψ
� �for

β = 2, 5, 7, 10, 14.
Similarly, the semi-convergence behavior of the LPIC

detector with respect to the weighting factor ω is illu-
strated in Figure 7 where the norm of the relative error
is plotted against the weighting factor ω for several
values of p, that is p= 10, 20, 50, 100, and 500.
It is clear from Figure 6 that with increasing values of

the weighting factor ω, the convergence speed increases
as well and the norm of the relative error exhibits a
bowl-shaped curve with a sharp curvature towards the
minimum. However, with decreasing values of the
weighting factor, the convergence speed decreases and
more importantly the bowl-shaped curve exhibits a flat
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minimum. Similar conclusion can be derived for Figure 7
for the stage index p.
As it will be shown in the simulation results, the aver-

age BER of the LPIC detector exhibits the same semi-
convergence behavior as for the norm of the relative
error in Figures 6 and 7.

Stopping rule for the LPIC detector
In this section, we investigate the possible use of the
Morozov discrepancy rule [17,22] to develop a proper
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Figure 7 Norm of the relative error of the LPIC detector vis-à-vis the
criterion for stopping the iterations of the LPIC detector
before the noise enhancement effect starts dominating
the solution.

Morozov discrepancy rule for the LPIC detector
The accuracy of the regularized solution yp cannot exceed
that of the received data vector r.
Therefore, if we have an LPIC detector in which the

only regularization parameter is the stage index p (the
weighting factor is set to one), the best regularized
8 10 12 14 16
g factor ( )

10)
20)
50)
100)
500)

weighting factor ω.






Figure 8 Illustration of the Morozov discrepancy rule.
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solution yp is obtained by iterating till the residual error
is equal to the noise level, that is

~~ΨH r� ~~Ψyp
� ���� ���

2
¼ ρ ð21Þ

However, due to the fact that the regularization par-
ameter (stage index p) is an integer, the discrepancy
principle defined by Equation (21) may not be satisfied
exactly; therefore, we reformulate the definition to

popt ¼ argmin
1≤p≤P

pf gs:t: ~~ΨH r� ~~Ψyp
� ���� ���

2
≤ρ ð22Þ

This condition is illustrated in Figure 8 where at each
stage the norm of the residual error ‖ep‖2 of the LPIC
detector is evaluated and compared to the noise level ρ.
If the residual error becomes less than the noise level
then the LPIC detector’s iterations should be stopped.
The difference between the norm of the residual error
and the noise level is termed the discrepancy error δ and
it quantifies the amount of discrepancy resulting from
using the modified Morozov discrepancy rule of Equa-
tion (22) instead of the exact one described by Equation
(21).
But since we do not have only one regularization par-

ameter (i.e., the stage index p) but we have two instead,
that is, p and ω, direct application of Equation (22) is
not possible. Therefore, the Morozov discrepancy rule of
Equation (22) is modified using the following theorem.
Theorem:
The optimal stage index for the linear PIC detector

with regularization parameters p and ω using the Moro-
zov discrepancy rule can be approximated as

p′opt ’
argmin
1≤p≤P

pf gs:t: ~~ΨH r� ~~Ψyp
� ���� ���

2
≤ρ

ω

’ popt
ω

; if ω≪
1
σ2n

; 1 ≤n≤N ð23Þ

Proof:
Two regularization schemes are equivalent if they have

the same filter factors. Therefore, an LPIC scheme with
only one regularization parameter p is equivalent to an-
other LPIC scheme with two regularization parameters
p′ and ω if their filter factors are equal, that is
fn p′;ωð Þ ¼ fn pð Þ; 1 ≤n≤N . As shown in [20,23], the fol-
lowing approximation can be made

fn p;ωð Þ ’ pωσ2
n if σn is small more specifically :σ2n≪

1
ω

	
fn p;ωð Þ ’ 1 if σn is large

8<
:
Thus, p′ωσ2

n ¼ pσ2
n and consequentlyp ¼ p′ω . Hence,

Equation (23) is obtained.
Lemma

p′opt ’ popt
ω

; if ω≪
1

tr ~~ΨH ~~Ψ
� � ð24Þ

Proof:

Since σ2n is upper bounded by max σ2n
� �

and tr ~~ΨH ~~Ψ
� �

,

that is σ2n≤max σ2n
� �

≤tr ~~ΨH ~~Ψ
� �

, hence Equation (24) is

obtained.
Moreover, the discrepancy error δ due to not satisfying

the Morozov discrepancy rule is given by

δ ¼ ρ� epopt
�� ��

2
ð25Þ

As shown in Figure 8, the discrepancy error δ is a
function of two parameters: the initial residual error e0
and the weighting factor ω. Obviously, in order to
minimize the discrepancy error δ, one should better esti-
mate the noise level ρ using the residual error ep, that is,
making epopt

�� ��
2
as close as possible to ρ. This can be

realized by reducing the difference between the succes-
sive residual errors ep

�� ��
2 � epþ1

�� ��
2 through employing

smaller values of the weighting factor ω [15]. But, unfor-
tunately this will lead to slower convergence of the LPIC
detector. Therefore, the weighting factor should be
adjusted to realize two conflicting goals: fast conver-
gence and low discrepancy error. A possible solution is
to use a stage-dependent weighting factor that exhibits
large values in the initial stages where the main goal is
improving the convergence speed and small values at
later stages where the main goal is reducing the discrep-
ancy error. This subject is outside the scope of this study
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and it is a research topic by itself and therefore will be
treated independently in future study.
Simulation results
This section presents results illustrating the semi-
convergence behavior of the linear PIC detector and
showing the performance of the LPIC detector equipped
with the Morozov discrepancy principle. Figures 9 and
10 depict the average BER of the LPIC detector plotted
against the stage index p and the weighting factor ω at
SNR= 10 and 20 dB, respectively, with N= 32, K= 4 and
the frequency offsets of the four users set to (ε1 =–0.35,
ε2 = 0.38, ε3 = 0.36, ε4 =–0.39). The following remarks
can be stated.

� It can be seen that the average BER for both cases
(a) and (b) with increasing values of both/either p
and/or ω starts initially large, decreases until it
reaches the LMMSE detector’s performance and
then increases again resulting in an L-shaped valley
that illustrates clearly the semi-convergence
behavior of the LPIC detector.

� For varying p, the smaller the value of ω, the
more the average BER curve becomes flat around
its minimum, and hence the less the sensitivity of
the solution to the accuracy of the stopping
criterion employed. Note that this reduction in
sensitivity is achieved at the expense of slow
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Figure 9 Semi-convergence behavior of linear LPIC detector with resp
SNR=10 dB.
convergence speed. However, larger values of the
weighting factor are needed for faster convergence,
but unfortunately this requires a highly reliable
stopping criterion to determine the stage index
minimizing the average BER. Therefore, the
challenge is to develop efficient stopping rules that
can be used with high values of the weighting
factor so that we can gain both high convergence
speed and low average BER.

In the following, we evaluate the performance of the
LPIC detector equipped with the Morozov discrepancy
principle, that we call here Morozov-LPIC detector for
brevity. First, we evaluate its convergence behavior by
varying the stage index p and assessing its average BER
performance for different values of ω ¼ β 2

tr ~~ΨH ~~Ψ
� �.We set

β to 2, 4, 5, 7, 10, SNR= 20 dB, N= 32 and K= 4 with
frequency offsets of the four user set to (ε1 =–0.35,
ε2 = 0.38, ε3 = 0.36, ε4 =–0.39). Figure 11 shows the
results for the four detectors: Morozov-LPIC, LMMSE,
Matched Filter (MF), and Decorrelator (DEC).
As expected, it is clear that the average BER of the

Morozov-LPIC detector gets better and closer to that of
the LMMSE detector for smaller values of the weighting
factor ω at the expense of slower convergence. Larger
values of the weighting factor ω result in faster conver-
gence but unfortunately, with a larger discrepancy error
and bad average BER as well.
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In Figure 12, the average stopping stage index for
each Morozov-LPIC stage is obtained simply by sum-
ming up the stopping stage indices determined by the
Morozov discrepancy rule for M OFDM symbols and
then dividing by M. The average stopping stage index
is plotted versus the number of Morozov-LPIC stages.
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Figure 11 Convergence behavior of the Morozov-LPIC detector in AW
Obviously, as the weighting factor gets smaller (i.e., β
= 2) the residual error decreases slower as well and
therefore needs more stages to satisfy the Morozov
discrepancy rule and hence the average stopping stage
index increases with decreasing values of ω as depicted
in Figure 12.
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Figure 13 illustrates the average BER performance ver-
sus the SNR of the Morozov-LPIC and the other three
detectors for different values of the weighting factor ω.
The maximum number of stages P is fixed to 1000, we
set β to 2, 4, 5, 7, 10, N to 32 and K to 4 with frequency
offsets as follows (ε1 =–0.35, ε2 = 0.38, ε3 = 0.36, ε4 =–
0.39).
As expected, the Morozov-LPIC detector exhibits the

best average BER performance for small values of the
weighting factor (β = 2). This is clear at high SNRs
where the radius of the circle determined by the noise
level in Figure 8 gets smaller with increasing SNRs.
Hence, for large values of the weighting factor the dis-
crepancy error becomes large as well and consequently
the average BER of the Morozov-LPIC detector becomes
large too.
In Figure 14, the average stopping stage index for each

SNR is obtained simply by summing up the stopping
stage indices determined by the Morozov discrepancy
rule for M OFDM symbols and then dividing by M. The
averaged stopping stage index is plotted versus the SNR.
Obviously, the average stopping stage index increases

with the SNR because high SNRs translates into smaller
noise-level circles as illustrated in Figure 8; therefore,
the Morozov-LPIC detector needs more stages to satisfy
the Morozov discrepancy rule.
Figure 15 depicts the condition number of the system
cross-correlation matrix ~~ΨH ~~Ψ for both AWGN channel
and Rayleigh fading channels. The different simulation
parameters for the AWGN case are set to: N= 32 and
K= 4 with frequency offsets set to (ε1 =–0.35,2 = 0.38,
ε3 = 0.36, ε4 =–0.39). For the Rayleigh fading channel
case, in addition to the aforementioned simulation para-
meters, we set the carrier frequency to 3.5 GHz and the
speed of different users to, 80, 120, 90, and 100 km/h,
respectively. The main difference between the two cases
is that the system matrix in a Rayleigh fading channel is
time variant and severely ill-conditioned due to the na-
ture of the time-varying fading channel. This imposes
some challenges to the performance of the Morozov-
LPIC detector where due to the time varying nature of
the condition number a fixed weighting factor that
might be optimal for one ODFM symbol might result in
bad performance for another symbol. In order to over-
come this problem, a reasonably small value of the
weighting factor should be selected to achieve good per-
formance at the expense of slow convergence rate.
The average BER performance versus the SNR for a

Rayleigh fading channel of the Morozov-LPIC detector
for different values of the weighting factor ω is plotted
in Figure 16. The figure also shows the performance of
the DEC, LMMSE, and MF. The maximum number of
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stages P is fixed to 1000. The remaining parameters
are set as follows: β to 2, 4, 6, 12, N to 32, and K to
4 with frequency offsets of the four users are set to
(ε1 =–0.35,2 = 0.38, ε3 = 0.36, ε4 =–0.39). The carrier fre-
quency is set to 3.5 GHz and the speed of different users
is set to, 80, 120, 90, and 100 km/h, respectively. Similar
to the AWGN channel, using relatively small values of
the weighting factor enhances the performance of the
Morozov-LPIC detector, however, this results in a very
slow convergence rate. For this case, the best perform-
ance is achieved for β= 2, and it is expected that for
smaller values of β the performance of the Morozov-
LPIC detector would improve further.
In Figure 17, the average stopping stage index is plot-

ted versus the SNR. Similar to Figure 14, the average
stopping stage index increases with the SNR and the rate
of increase becomes larger for decreasing values of β.

Conclusion
In this study,we unveiled a new property of linear IC
detectors. Specifically, we proved that the LPIC detector
exhibits a semi-convergence behavior if the discrete Pic-
ard condition is not satisfied. Moreover, we showed that
this phenomenon can be circumvented if the iterations
are stopped before final convergence using a suitable
stopping rule. Consequently, we investigated the possible
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Figure 17 Average stopping stage index versus SNR of the Morozov-
use of the Morozov discrepancy principle to derive a
proper stopping condition for the LPIC iterations. Per-
formance analyzes of the LPIC detector using the Moro-
zov discrepancy principle showed that the value of the
weighting factor should tradeoff between two conflicting
goals: convergence speed and small discrepancy error.
Simulation results coincide well with our theoretical
findings. Future study includes extending these results to
other linear IC detectors such as the SIC, hybrid SIC/
PIC, etc., use of stage-dependent weighting factors to
compromise between convergence speed and small dis-
crepancy error and finally exploring other stopping rules.

Appendix
Recall that the vector of decision variables is given by

ypþ1 ¼ ω
Xp
i¼0

I� ω~~Ψ
H ~~Ψ

	 

i ~~ΨHr ¼ GH

p r ð26Þ

By expanding the summation in (26) we obtain

Xp
i¼0

I� ω~~ΨH ~~Ψ
� �

i ¼ Iþ I� ω~~ΨH ~~Ψ
� �

þ⋯

þ I� ω~~ΨH ~~Ψ
� �p

ð27Þ
20 25 30 35
R (dB)

LPIC detector in Rayleigh fading channel.
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Multiplying both terms by I� ω~~ΨH ~~Ψ
� �

and adding

the identity matrix I, we obtain:

Iþ I� ω~~Ψ~~ΨH ~~Ψ
� �Xp

i¼0

I� ω~~ΨH ~~Ψ
� �

i

¼ Iþ I� ω~~ΨH ~~Ψ
� �

þ⋯þ I� ω~~ΨH ~~Ψ
� �p

þ I� ω~~ΨH ~~Ψ
� �pþ1

¼
Xp
i¼0

I� ω~~ΨH ~~Ψ
� �

iþ I� ω~~ΨH ~~Ψ
� �pþ1

ð28Þ

Therefore, the summation in (27) can be expressed as

Xp
i¼0

I� ω~~ΨH ~~Ψ
� �

i ¼ ω�1 ~~ΨH ~~Ψ
� ��1

� I� I� ω~~ΨH ~~Ψ
� �pþ1

	 

ð29Þ

Hence,

ypþ1 ¼ ~~ΨH ~~Ψ
� ��1

I� I� ω~~ΨH ~~Ψ
� �pþ1

	 

~~ΨHr ð30Þ

Using the SVD of H defined in (4), Equation (30) can
be expressed as

ypþ1 ¼ VΣHΣVH
� ��1

I� I� ωVΣHΣVH
� �pþ1

� �
� VΣUHr ð31Þ

which finally can be written as

ypþ1 ¼ V I� I� ωΣHΣ
� �pþ1

� �
Σ�1UHr

¼ VFpþ1Σ
�1UHr

ð32Þ

where Fpþ1 ¼ I� I� ωΣHΣ
� �pþ1

.
This concludes the proof.

Competing interests
The authors declare that they have no competing interests.

Acknowledgment
The authors acknowledge the support of KSU. The study was supported by
the KACST under project number ARP 29-55.

Author details
1Prince Sultan Advanced Technologies Research Institute (PSATRI)/STC chair,
King Saud University, P.O.Box 800, Riyadh 11421, Saudi Arabia.
2KACST-Technology Innovation Center in Radio Frequency and Photonics for
e-Society (RFTONICS), Electrical Engineering Department, King Saud
University, P.O.Box 800, Riyadh 11421, Saudi Arabia.

Received: 3 December 2011 Accepted: 24 May 2012
Published: 13 July 2012

References
1. M.L. Honig, Advances in Multiuser Detection Wiley Series in

Telecommunications and Signal Processing (2009). ISBN: 9780470473801
2. V.K. Vardhan, S.K. Mohammed, A. Chockalingam, B.S. Rajan, A low-
complexity detector for large MIMO systems and multicarrier CDMA
systems. IEEE J. Sel. Areas Commun. 26(3), 473–485 (2008)

3. S.K. Mohammed, A. Zaki, A. Chockalingam, B.S. Rajan, High-rate space-time
coded large-MIMO systems: low-complexity detection and channel
estimation. IEEE J. Sel. Topics Signal Process. 3(6), 958–974 (2009)

4. S.W. Hou, C.C. Ko, Intercarrier interference suppression for OFDMA uplink in
time- and frequency-selective fading channels. IEEE Trans. Veh. Technol.
58(6), 2741–2754 (2009)

5. D. Sreedhar, A. Chockalingam, Interference mitigation in cooperative SFBC-
OFDM. EURASIP J. Adv. Signal Process 11 (2008). Article ID 125735, 11

6. H. Mrabet, I. Dayoub, R. Attia, S. Haxha, Performance improving of OCDMA
system using 2-D optical codes with optical SIC receiver. J. Lightw. Technol.
27(21), 4744–4753 (2009)

7. IEEE Standard for Local and Metropolitan area networks Part 16, Air
Interface for Fixed and Mobile Broadband Wireless Access Systems
Amendment 2: Physical and Medium Access Control Layers for Combined
Fixed and Mobile Operation in Licensed Bands. The Institute of Electrical
and Electronics Engineering, Inc (2005). Std. IEEE 802.16E-2005

8. R.M. Buehrer, N.S. Correal-Mendoza, B.D. Woerner, A simulation comparison
of multi-user receivers for cellular CDMA. IEEE Trans. Veh. Technol. 49(4),
1065–1085 (2000)

9. A.F. Molisch, M. Toeltsch, S. Vermani, Iterative methods for cancellation of
intercarrier interference in OFDM systems. IEEE Trans. Veh. Technol. 56(4),
2158–2167 (2007)

10. A. Ancora, G. Montalbano, D.T.M. Slock, Preconditioned iterative inter-carrier
interference cancellation for OFDM reception in rapidly varying channels. in
Proc. ICASSP, 3066–3069 (2010)

11. M.J. Juntti, B. Aazhang, J.O. Lilleberg, Iterative implementation of linear
multiuser detection for dynamic asynchronous CDMA systems. IEEE Trans.
Commun. 46, 503–508 (1998)

12. A.L. Johansson, L.K. Rasmussen, in Proceedings of the IEEE Int. Symp. Spread
Spectrum Techniques and Appl, Sun City, South Africa 1, 121–126 (1998)

13. S. Sun, L.K. Rasmussen, T.J. Lim, H. Sugimoto, A matrix-algebraic approach to
linear hybrid interference canceller in CDMA. Proceedings of the IEEE Int.
Conf. Univ. Personal Commun. Florence, Italy 2, 1319–1323 (1998)

14. L.K. Rasmussen, T.J. Lim, A.L. Johansson, A matrix-algebraic approach to
successive interference cancellation in CDMA. IEEE Trans. Commun. 48(1),
145–151 (2000)

15. L.K. Rasmussen, I.J. Oppermann, Ping-pong effects in linear parallel
interference cancellation for CDMA. IEEE Trans. Wirel. Commun. 2, 357–363
(2003)

16. A. Bentrcia, A. Zerguine, A new approach to the analysis of the linear group-
wise parallel interference cancellation detector (inPIMRC 2008, Canne, France,
2008), pp. 1–5

17. A.A. Samarskii, P.N. Vabishchevich, Numerical Methods for Solving Inverse
Problems of Mathematical Physics (Walter de Gruyter, Berlin, 2007). ISBN 978-
3-11-019666-5

18. S.K. Hashemizadeh, H. Saeedi-Sourck, M.J. Omidi, Sensitivity analysis of
interleaved OFDMA system uplink to carrier frequency offset. in IEEE 22nd
International Symposium on Personal Indoor and Mobile Radio
Communications, 1631–1635 (2011)

19. M. ThambanNair, Linear Operator Equations (Approximation and
Regularization World Scientific Publishing Company, Singapore, 2009). ISBN
9812835644

20. P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems (Numerical
Aspects of Linear Inversion(Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1998). ISBN: 0-89871-403-6

21. A. Bentrcia, A. Zerguine, A new linear group-wise parallel interference
cancellation detector. Wirel. Personal Commun. 49(1), 23–34 (2009)

22. M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging (IOP
Publishing Ltd, Bristol, 1998)

23. U. Hamarik, R. Palm, On rules for stopping the conjugate gradient type
methods in ill-posed problems. Math. Model. Anal. 12(1), 61–70 (2007)

doi:10.1186/1687-6180-2012-145
Cite this article as: Bentrcia and Alshebeili: Regularization property of
linear interference cancellation detectors. EURASIP Journal on Advances in
Signal Processing 2012 2012:145.


	Abstract
	Introduction
	Notations

	System model
	The na&iuml;ve solution and the noise enhancement effect
	Discrete picard condition

	The LPICdetector
	Spectral filtering property of the LPIC detector
	Semi-convergence property of the LPIC detector
	Stopping rule for the LPIC detector
	Morozov discrepancy rule for the LPIC detector


	Simulation results
	Conclusion
	Appendix
	Competing interests
	Acknowledgment
	Author details
	References

