27 research outputs found

    Devotional Biology: A Young-age Creationist, College-level, Conceptual Biology Textbook

    Get PDF
    Devotional Biology is being developed as a one-semester college-level conceptual biology textbook for non-science majors. Except for presenting a survey of organisms and an introduction to organismal anatomy and physiology (typically reserved for a second-semester course), Devotional Biology covers all the major topics of biology presented in secular texts as well as a few others not usually covered at all. Student surveys indicate students believe they learn biology through the Devotional Biology text. At the same time, Devotional Biology presents biology from the perspective of a distinctly biblical worldview—and on surveys, Devotional Biology students believe they improved their appreciation of biology as well. Devotional Biology also focuses on God, and how His attributes are evident in the biological world—and on surveys, Devotional Biology students believe they improved their recognition of God in the creation, their understanding of God, their relationship to God, and their use of the creation in witness to others. Devotional Biology also assumes a young-age creationist interpretation of biology, critiquing the naturalistic perspective of the field in the process—and on surveys, Devotional Biology students believe they grew in their faith and learned to defend their faith. Devotional Biology also includes responsibilities of believers as priests and kings in God’s creation—and on surveys, Devotional Biology students believe they grew in their understanding of their ethical responsibilities, in their worship of God, and in better ruling over the creation

    U.S. Dietary and Physical Activity Guideline Knowledge and Corresponding Behaviors Among 4th and 5th Grade Students: A Multi-Site Pilot Study

    Get PDF
    Knowledge of U.S. dietary and physical activity recommendations and corresponding behaviors were surveyed among 4th and 5th graders in five Arizona counties to determine the need for related education in SNAP-Ed eligible schools.

    Isolation of Cerebral Capillaries from Fresh Human Brain Tissue

    Get PDF
    Understanding blood-brain barrier function under physiological and pathophysiological conditions is critical for the development of new therapeutic strategies that hold the promise to enhance brain drug delivery, improve brain protection, and treat brain disorders. However, studying the human blood-brain barrier function is challenging. Thus, there is a critical need for appropriate models. In this regard, brain capillaries isolated from human brain tissue represent a unique tool to study barrier function as close to the human in vivo situation as possible. Here, we describe an optimized protocol to isolate capillaries from human brain tissue at a high yield and with consistent quality and purity. Capillaries are isolated from fresh human brain tissue using mechanical homogenization, density-gradient centrifugation, and filtration. After the isolation, the human brain capillaries can be used for various applications including leakage assays, live cell imaging, and immune-based assays to study protein expression and function, enzyme activity, or intracellular signaling. Isolated human brain capillaries are a unique model to elucidate the regulation of the human blood-brain barrier function. This model can provide insights into central nervous system (CNS) pathogenesis, which will help the development of therapeutic strategies for treating CNS disorders

    A large-scale genome-wide association study meta-analysis of cannabis use disorder

    Get PDF
    Summary Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86–0·93, p=6·46 × 10−9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder. Funding National Institute of Mental Health; National Institute on Alcohol Abuse and Alcoholism; National Institute on Drug Abuse; Center for Genomics and Personalized Medicine and the Centre for Integrative Sequencing; The European Commission, Horizon 2020; National Institute of Child Health and Human Development; Health Research Council of New Zealand; National Institute on Aging; Wellcome Trust Case Control Consortium; UK Research and Innovation Medical Research Council (UKRI MRC); The Brain & Behavior Research Foundation; National Institute on Deafness and Other Communication Disorders; Substance Abuse and Mental Health Services Administration (SAMHSA); National Institute of Biomedical Imaging and Bioengineering; National Health and Medical Research Council (NHMRC) Australia; Tobacco-Related Disease Research Program of the University of California; Families for Borderline Personality Disorder Research (Beth and Rob Elliott) 2018 NARSAD Young Investigator Grant; The National Child Health Research Foundation (Cure Kids); The Canterbury Medical Research Foundation; The New Zealand Lottery Grants Board; The University of Otago; The Carney Centre for Pharmacogenomics; The James Hume Bequest Fund; National Institutes of Health: Genes, Environment and Health Initiative; National Institutes of Health; National Cancer Institute; The William T Grant Foundation; Australian Research Council; The Virginia Tobacco Settlement Foundation; The VISN 1 and VISN 4 Mental Illness Research, Education, and Clinical Centers of the US Department of Veterans Affairs; The 5th Framework Programme (FP-5) GenomEUtwin Project; The Lundbeck Foundation; NIH-funded Shared Instrumentation Grant S10RR025141; Clinical Translational Sciences Award grants; National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences.Peer reviewe

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    A large-scale genome-wide association study meta-analysis of cannabis use disorder

    Get PDF
    Background: Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family heritability about 50-70%) and is associated with negative outcomes, including increased risk of psychopathology. The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants associated with cannabis use disorder. Methods: To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations. Findings: We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07-1·15, p=1·84 × 10-9) and the previously identified chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0·86-0·93, p=6·46 × 10-9). Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10-21), but they showed significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically correlated with other psychopathology, including ADHD, major depression, and schizophrenia. Interpretation: These findings support the theory that cannabis use disorder has shared genetic liability with other psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder

    Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders

    Get PDF
    Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest genome-wide association study to date of DSM-IV-diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case-control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, n = 46,568; African, n = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; P = 9.8 x 10(-13)) and African ancestries (rs2066702; P = 2.2 x 10(-9)). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, attention deficit-hyperactivity disorder, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and nonpathological drinking behaviors.Peer reviewe

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Vulnerabilitätsanalyse "Hitzestress und menschliche Gesundheit" am Beispiel der Stadt Reutlingen

    No full text
    In diesem Modellprojekt wird das Schutzgut "Menschliche Gesundheit" insbesondere unter dem Gesichtspunkt der im Rahmen des globalen Klimawandels zu erwartenden Überhitzung der Städte ("städtische Hitzeinseln") betrachtet. In der Großstadt Reutlingen ("Tor zur Schwäbischen Alb/112.500 EW) mit ihrer Pfortenlage am Rande der Schwäbischen Alb und der Höhenlage (400-800 m) sowie der Bebauungsdichte werden bis 2050 bzw. 2100 (Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) die massivsten Auswirkungen bezüglich Aufenthaltsbehaglichkeit und Gesundheitsfolgen in Reutlingen erwartet. Der Untersuchungsschwerpunkt liegt im Wirkungsbereich Mensch-Siedlung, d.h. in der Betrachtung von empfindlichen Bevölkerungspopulationen (z.B. ältere Menschen) und hitzeempfindlichen Nutzungsstrukturen (z.B. verdichteten städtischen Siedlungsflächen). Insbesondere die bereits in der abgeschlossenen Gesamtstädtischen Klimaanalyse ermittelten überwärmten Areale ("hot spots") und die im Rahmen des Klimawandels für 2020-2050 zukünftig zu erwartende Hitzestressbelastung bei empfindlichen Bevölkerungsgruppen in Stadtquartieren und Funktionsbauten, stehen im Zenit der Untersuchung. Dabei wird über das Kriterium Empfindlichkeit (Basis sind z.B. quartierbezogene Datenstrukturen von Älteren, Einrichtungen wie Krankenhäuser, Kinderpflegeeinrichtungen, Alten- Behinderten- und Pflegeheime) die zukünftige Hitzestress-Belastung für Reutlingen erarbeitet. Weiteres wichtiges Kriterium ist die Betroffenheit nach Standortsituation (Höhenlage, Durchlüftungsverhältnisse, Bioklima/PMV = Maß für die bioklimatische Behaglichkeit) und die Anzahl hitzestressgeplagter Menschen (Kinder, Kranke, Ältere). Insbesondere für das Szenarium 2020 bis 2050 (s. Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) werden objekt- bzw. einrichtungsbezogen (z.B. Altenpflegeeinrichtungen) sowie quartiersspezifisch (Stadtstrukturtypen) die Auswirkungen bzw. Verwundbarkeiten erarbeitet. Dieser objektspezifische (bauklimatische) Ansatz, die innovative Indikatorenbildung zur situativen kommunalen Anwendbarkeit auch über Reutlingen hinaus sowie der partizipative Ansatz mit Nichtregierungsorganisationen (NGO´s) begründet den Modellcharakter ("Reutlinger Modell") dieser Untersuchung. Das Modellprojekt bildet das zweite Modul in einem dreiteiligen Klimaanpassungskonzept für die Stadt Reutlingen
    corecore