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Summary
Background Variation in liability to cannabis use disorder has a strong genetic component (estimated twin and family 
heritability about 50–70%) and is associated with negative outcomes, including increased risk of psychopathology. 
The aim of the study was to conduct a large genome-wide association study (GWAS) to identify novel genetic variants 
associated with cannabis use disorder.

Methods To conduct this GWAS meta-analysis of cannabis use disorder and identify associations with genetic loci, we 
used samples from the Psychiatric Genomics Consortium Substance Use Disorders working group, iPSYCH, and 
deCODE (20 916 case samples, 363 116 control samples in total), contrasting cannabis use disorder cases with controls. 
To examine the genetic overlap between cannabis use disorder and 22 traits of interest (chosen because of previously 
published phenotypic correlations [eg, psychiatric disorders] or hypothesised associations [eg, chronotype] with 
cannabis use disorder), we used linkage disequilibrium score regression to calculate genetic correlations.

Findings We identified two genome-wide significant loci: a novel chromosome 7 locus (FOXP2, lead single-nucleotide 
polymorphism [SNP] rs7783012; odds ratio [OR] 1·11, 95% CI 1·07–1·15, p=1·84 × 10−⁹) and the previously identified 
chromosome 8 locus (near CHRNA2 and EPHX2, lead SNP rs4732724; OR 0·89, 95% CI 0⋅86–0⋅93, p=6·46 × 10−⁹). 
Cannabis use disorder and cannabis use were genetically correlated (rg 0·50, p=1·50 × 10−²¹), but they showed 
significantly different genetic correlations with 12 of the 22 traits we tested, suggesting at least partially different 
genetic underpinnings of cannabis use and cannabis use disorder. Cannabis use disorder was positively genetically 
correlated with other psychopathology, including ADHD, major depression, and schizophrenia.

Interpretation These findings support the theory that cannabis use disorder has shared genetic liability with other 
psychopathology, and there is a distinction between genetic liability to cannabis use and cannabis use disorder.
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Introduction
Cannabis use is common, but most users do not 
progress to cannabis use disorders. About 50–70% of 
liability to cannabis use disorders is due to genetic factors.1 
Three genome-wide association studies (GWASs) of 
cannabis use disorders2–4 have identified variants reaching 
genome-wide significance, but inadequate sample sizes 
(sample size from largest study to date: 51 372, with 
2387 cases) and heterogeneity among samples have 
contributed to a paucity of replicable findings: only one 
locus, tagged by a cis-eQTL for CHRNA2 (encoding a 
nicotinic acetylcholine receptor), has been robustly 
identified.3

A GWAS of lifetime cannabis use (184 765 total 
sample size, 43 380 cases) identified eight genome-wide 

significant loci and 35 significant genes.5 Twin studies 
suggest high genetic correlations between early stages 
of cannabis experimentation and later cannabis 
use disorder.6 However, casual cannabis use is affected 
by a variety of socioenvironmental influences and age-
period-cohort effects, whereas progression to cannabis 
use disorder is related to other psychopathologies. 
Findings have suggested partially distinct genetic 
causes underlying alcohol consumption and alcohol 
use disorder, including different genetic associations 
with other psychiatric disorders and traits.7,8 Thus, in 
addition to examining the genomic liability for cannabis 
use disorder, we tested whether the genetic influences 
underlying cannabis use and cannabis use disorder 
diverge with respect to behavioural and brain measures.
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Research in context

Evidence before this study
Cannabis use disorder is heritable (50–70% according to twin 
and family studies), yet identification of genomic variants 
associated with cannabis use disorder from genome-wide 
association studies (GWASs) remains sparse. We surveyed all 
peer-reviewed journal publications in English on GWASs of 
cannabis use disorder or cannabis dependence using Google 
Scholar and PubMed, published between Jan 1, 1990, and 
April 1, 2020. Search terms included “cannabis dependence”, 
“cannabis abuse”, “cannabis use disorder”, “marijuana 
dependence”, “marijuana abuse”, “marijuana use disorder”, and 
“GWAS”. The most promising finding to date is a variant that is 
a cis-eQTL for CHRNA2 (Demontis and colleagues), which was 
replicated in an independent dataset for cannabis use disorder. 
Independently, GWAS of cannabis use have identified multiple 
genetic risk loci; however, the extent to which the genetics of 
cannabis use correlates with liability to cannabis use disorder 
has not been determined. Although GWASs of cannabis use 
have been studied in the context of a variety of psychiatric and 
psychosocial correlates, it is expected that some divergent 
associations will be seen when looking at cannabis use disorder. 
Previous studies have drawn causal links between cannabis 
exposure and brain volume, but the relationship between 
genetic liability to cannabis use disorder and brain volume in 
individuals naive to cannabis has not yet been studied.

Added value of this study
Our study is the current largest GWAS of cannabis use disorder 
and the first to include a transancestral component. We found 

a novel risk locus on chromosome 7. The lead risk variant at 
this locus is an eQTL for FOXP2—a gene previously implicated 
in risk-taking behaviours. Contrasting cannabis use and 
cannabis use disorder, we found that increased liability for 
cannabis use disorder is genetically correlated with low 
educational attainment, early age at first birth, and high 
body-mass index, traits that show opposite directions of 
association with lifetime cannabis ever-use. We also found 
that genetic liability for cannabis use disorder is associated 
with increased risk of mental health problems, infectious 
diseases, and respiratory illnesses in a large independent 
sample. Finally, we found a significant association between 
increased polygenic liability for cannabis use disorder and low 
white matter volume in cannabis-naive children, suggesting a 
potential role of cannabis-related genetic predisposition in 
early brain development.

Implications of all the available evidence
Cannabis use disorder is a psychiatric illness that is genetically 
associated with many negative outcomes (including increased 
risk of psychiatric disorders and respiratory illnesses). Lifetime 
cannabis use and cannabis use disorder show at least partially 
divergent genetic influences and associations with relevant 
traits. Given increasingly permissive cannabis laws and positive 
perceptions of its safety, the recognition that cannabis use 
disorder is a serious psychiatric illness should spur prevention 
and treatment efforts.
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Methods
Samples
We performed a GWAS of 20 samples in total: 18 from 
the Psychiatric Genomics Consortium Substance Use 
Disorders working group (European ancestry 8277 cases, 
23 497 controls; African ancestry 3848 cases, 5897 controls), 
one iPSYCH9 sample (European ancestry 2758 cases, 
53 326 controls), and one deCODE sample (European 
ancestry 6033 cases, 280 396 controls; table 1; appendix 
pp 2–8).

This study was approved by the institutional review 
board at Washington University School of Medicine and 
was done in accordance with all relevant ethical 

regulations. Investigators for each contributing study 
obtained informed consent from their participants and 
received ethics approvals from their respective review 
boards in accordance with applicable regulations. 
Personal identifiers associated with phenotypic infor
mation and samples from deCODE were encrypted using 
a third-party encryption system.10 The iPSYCH group 
used pseudonymised unique identifications.9

Measures
Psychiatric Genomics Consortium cases met criteria for 
a lifetime diagnosis of DSM-IV (or DSM-III-R) cannabis 
abuse or dependence11 derived from clinician ratings or 
semi-structured interviews.7 Cases from the iPSYCH 
sample had ICD-10 codes of F12.1 (cannabis abuse) or 
F12.2 (cannabis dependence), or both in the Danish 
Psychiatric Central Research Register;12 the remaining 
individuals in the sample were used as controls. Cases in 
the deCODE sample met criteria for lifetime DSM-III-R 
or DSM-IV cannabis abuse or dependence or DSM-5 
cannabis use disorder according to diagnoses made at 
the National Center of Addiction Medicine in Iceland, 
whereas controls were derived from the general popu
lation of Iceland (appendix pp 2–3). Exposure data were 
not available for some large groups (eg, iPSYCH and 
deCODE); therefore, controls were defined regardless of 
lifetime cannabis exposure across all datasets.

Genotyping: quality control and imputation
For the Psychiatric Genomics Consortium, standard 
procedures for GWAS quality control and imputation 
were applied using the Ricopili13 pipeline for case-control 
groups and the Picopili pipeline for family-based samples. 
Briefly, variants in each group were filtered for call rate 
(<5% missingness), followed by individual-level filtering 
for call rate (<2% missingness) and heterozygosity (|Fhet| 
<0·20). If available, chromosome X variants were checked 
to ensure concordance between genotype sex and 
reported sex. Variants were then filtered more stringently: 
variants with more than 2% missingness, differential 
missingness between cases and controls greater 
than 2%, invariant markers, and those departing from 
Hardy-Weinberg equilibrium in cases (p<1·00 × 10−¹⁰) or 
controls (p<1·00 × 10−⁶) were removed (appendix pp 8–10). 
Principal components analysis was done on a stringently 
quality-control set of variants using EIGENSOFT14,15 to 
exclude population outliers, infer ancestry among the 
retained individuals (using the 1000 Genomes Phase 316 
cosmopolitan reference panel), and derive ancestry-
specific principal components for inclusion in analyses 
(appendix p 10). Sample and variant quality-controlled 
procedures, including filters for call rate, heterozygosity, 
and departure from Hardy-Weinberg equilibrium, were 
done within each ancestry group in each sample. Each 
group was phased using SHAPEIT17 and imputed using 
IMPUTE218 to the 1000 Genomes Phase 316 cosmo
politan reference panel (appendix pp 10–11). Duplicate 

European ancestry African ancestry European ancestry—
case-control individuals

Cases Controls Cases Controls Cases Controls

Case-control studies

CATS 958 453 ·· ·· 958 453

CADD 397 699 59 55 397 699

CHDS 201 420 ·· ·· 201 420

FSCD 226 314 199 401 226 314

COGEND Nico 306 607 154 313 306 607

COGEND SAGE 228 830 79 187 228 830

GEDI-GSMS 81 491 ·· ·· 81 491

ADAA ·· ·· 1000 811 ·· ··

Total 2397 3814 1491 1767 2397 3814

Family-based studies

BLTS 170 1216 ·· ·· 147 662

MCTFR 449 1625 ·· ·· 389 1185

Yale Penn 1 916 833 1189 1857 839 657

Yale Penn 2 557 497 355 548 557 495

bigCOGA 2206 5053 813 1725 248 795

CEDAR 64 148 ·· ·· 64 148

OZ-ALC 593 4893 ·· ·· 470 1534

VTSABD 99 734 ·· ·· 94 361

IASPSAD 104 613 ·· ·· 84 353

Total 5158 15 612 2357 4130 2892 6190

Summary statistics

Add health 722 4071 ·· ·· ·· ··

PGC studies total 8277 23497 3848 5897 5289 10 004

iPSYCH 2758 53326 0 0 2758 53 326

deCODE 6033 280 396 0 0 6033 280 396

Total (European 
ancestry)

17 068 357 219 ·· ·· 14 080 343 726

Total 
(Transancestral)

20 916 cases; 
36 3116 
controls

·· ·· ·· ·· ··

ADAA=Alcohol Dependence in African Americans. BLTS= Brisbane Longitudinal Twin Study. CADD=Center on Antisocial 
Drug Dependence. CATS=Comorbidity and Trauma Study. CEDAR= Center for Education and Drug Abuse Research. 
CHDS=Christchurch Health and Development Study. COGA=Collaborative Study on the Genetics of Alcoholism. 
COGEND=Collaborative Genetic Study of Nicotine Dependence. FSCD=Family Study of Cocaine Dependence. 
GEDI=Gene-Environment-Development Initiative. GSMS=Great Smoky Mountains Study. IASPSAD=Irish Affected 
Sib-Pair Study of Alcohol Dependence. MCTFR=Minnesota Center for Twin and Family Research. OZ-ALC=Australian 
Alcohol and Nicotine Studies. SAGE=Study of Addiction: Genetics and Environment. VTSABD=Virginia Twin Studies of 
Adolescent Behavioral Development.

Table 1: Numbers of cases and controls in meta-analysis
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individuals were removed and individuals who were 
cryptically related across groups were excluded from all 
but one group (appendix p 12). Single-nucleotide poly
morphisms (SNPs) were filtered for INFO score of more 
than 0·8 and minor allele frequency of at least 0·01 before 
meta-analysis (appendix pp 13–14).

Quality control of iPSYCH data mirrored the process 
implemented in the Psychiatric Genomics Consortium, 
with minor deviations in thresholds for exclusion 
(appendix p 9).3 As for deCODE, samples were assayed 
with several Illumina arrays at deCODE genetics. SNPs 
with low call rate (<95%), significant deviation from 
Hardy-Weinberg equilibrium (p<0·001), and excessive 
inheritance error rates (>0·001) were excluded. We did 
variant imputation on the basis of the IMPUTE HMM 
model  and long-range phasing.19 Variants were further 
filtered for imputation INFO score more than 0·8 and 
minor allele frequency at least 1% before inclusion in 
meta-analysis.

Statistical analysis
We did separate association analyses for each sample 
(ie, 18 individual samples from Psychiatric Genomics 
Consortium, iPSYCH, and deCODE) by ancestry. For the 
eight case-control studies from the Psychiatric Genomics 
Consortium, imputed dosages were analysed using 
logistic regression models, implemented in the Ricopili 
pipeline.13 For family-based samples of the Psychiatric 
Genomics Consortium, we did association analyses with 
imputed best-guess genotypes using generalised esti
mating equations for samples that included only first-
degree relatives (eg, sibships), and logistic mixed models 
for complex pedigrees, in the Picopili pipeline.7 For 
calculation of SNP heritability and genetic correlations, 
subsets of genetically unrelated individuals were selected 
from each family-based sample from the Psychiatric 
Genomics Consortium and analysed using logistic 
regression through Picopili (5289 cases, 10 004 controls). 
These results were then meta-analysed along with the 
case-control groups. Psychiatric Genomics Consortium 
covariates included sex and five to ten within-ancestry 
principal components to account for population 
stratification (appendix pp 12–13). Because age was not 
available in all samples, it was not included as a covariate 
in the Psychiatric Genomics Consortium analyses. 
Sensitivity analyses in one representative sample showed 
this to have no impact on study-specific findings.

In the iPSYCH cohort, logistic regression was done 
with imputed dosages, covarying for five ancestral 
principal components, data processing waves, and the 
presence of another psychiatric disorder (because 
iPSYCH was established to study major psychiatric 
disorders, cases of cannabis use disorder and controls 
include comorbidity).3 Adding sex as a covariate to 
iPSYCH analyses has been shown not to alter findings.20

deCODE data were analysed using logistic regression of 
imputed dosage data with sex, age, and county of origin 

as covariates.21 To account for inflation due to population 
stratification and relatedness, test statistics were divided 
by an inflation factor estimated from linkage dis
equilibrium score regression (LDSR; appendix p 13).22

Effective sample size-weighted meta-analyses across 
case-control and family-based samples within ancestry 
were done using METAL (appendix pp 13–14).23 First, 
summary statistics of case-control and family-based 
samples from the Psychiatric Genomics Consortium 
were combined and weighted by the effective sample size, 
because effect sizes from case-control logistic regression 
analyses and family-based analyses using generalised 
estimating equations and logistic mixed models are not 
directly comparable. Then the Psychiatric Genomics 
Consortium results were meta-analysed with those from 
the iPSYCH and deCODE samples (between-sample 
genetic correlations [rg] 0·66–0·70). The summary 
statistics were filtered such that an SNP had to be present 
in at least two of the three contributing GWASs (deCODE, 
iPSYCH, and the Psychiatric Genomics Consortium).

We also did a meta-analysis that excluded related indivi
duals from the family-based samples of the Psychiatric 
Genomics Consortium, using an inverse variance-
weighted scheme, to generate summary statistics that 
produced effect sizes for use in follow-up analyses 
(14 080 cases, 343 726 controls). A transancestral meta-
analysis using METAL23 combined results across the 
European and African ancestry cohorts, comprising 
20 916 individuals with cannabis use disorder (17 068 from 
European ancestry, 3848 from African ancestry) and 
363 116 controls (357 219 from European ancestry, 
5897 African ancestry; appendix pp 13–14, 17). Conditional 
analyses were done in GCTA-COJO24 by conditioning the 
meta-analysis summary statistics on the lead variants of 
genome-wide significance.

The FUMA web-based platform25 version 1.3.5e was 
used for visualisation and annotation, and MAGMA26 
was used within the FUMA framework to do gene-based 
association analyses, with SNPs assigned to genes on the 
basis of physical position (appendix pp 14–15). We also 
used Hi-C coupled MAGMA to assign non-coding 
SNPs (intergenic and intronic) to genes on the basis of 
their chromatin interactions (exonic and promoter 
SNPs are still assigned to genes on the basis of their 
genomic location; appendix p 15).27 Pathway analyses 
were done using PASCAL to test canonical pathways in 
the European ancestry sample.28 All variants within all 
genes were tested, using default settings, with the 
structure of linkage disequilibrium estimated using the 
1000 Genomes European sample as a reference. We used 
S-PrediXcan29 to examine gene expression differences 
associated with case-control status, using our summary 
statistics of cannabis use disorder and transcriptome 
data from the PredictDB Data Repository for 11 brain 
regions, liver tissue, whole blood, and two types of 
adipose tissue. We included these tissues because 
cannabis use disorder is a psychiatric disorder and 

http://predictdb.org
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tetrahydrocannabinol, a key psychoactive cannabis 
component, accumulates in adipose tissue.30 Analyses 
were restricted to the European ancestry meta-analysis 
because the prediction models were trained on reference 
transcriptome data from GTEx version 831 using only 
individuals of European ancestry. The significance 
threshold was corrected for the total number of gene-
tissue pairs tested (75 684 tested, α=6·69 × 10−⁷).

Heritability explained by common variants (h²SNP) and 
genetic correlations with 23 other traits chosen because 
of previous findings or hypothesised relationships 
(including cannabis use; appendix pp 15–17) were 
estimated using LDSR22,32 on the results of the 
meta-analysis of case-control individuals of European 
ancestry (the number of unrelated cases of African 
ancestry was less than the acceptable sample size 
threshold for LDSR). Conversion of h²SNP estimates from 
observed scale to liability scale was done using a range of 
estimated population prevalences from 1%3 to 8·5% 
(because in some samples we used DSM-IV cannabis 
abuse or dependence).33 Significance of genetic corre
lations with other traits was determined using a 
Bonferroni correction for 23 tests (including with 
cannabis use; α=0·002). Finally, we examined whether 
the genetic correlations for cannabis use disorder were 
significantly different than those for cannabis use5 using 
the jackknife procedure implemented through LDSR.32

To investigate potential causal relationships, we did 
latent causal variable analyses on cannabis use disorder 
and the top genetically correlated traits: educational 
attainment, age at first birth, Townsend Deprivation 
Index, smoking initiation, and ADHD (appendix p 16).34

We used mtCOJO35 to condition the summary statistics 
of cannabis use disorder on loci associated with cannabis 
use at p<0·0015 to adjust for as many SNPs as possible 
while retaining computational efficiency. Adjusted 
summary statistics were used to recompute genetic 
correlations. Because of the high co-occurrence of 
cannabis use and tobacco smoking, we also did mtCOJO 
analyses to condition the summary statistics of cannabis 
use disorder for loci significantly associated with smoking 
initiation and cigarettes smoked per day36 (p<5·00 × 10–⁸; 
excluding 23andMe data, because of restricted access). 
Moreover, given long-standing interest in the comorbidity 
of schizophrenia and cannabis misuse, we used mtCOJO 
to condition the summary statistics of cannabis use 
disorder on significant schizophrenia loci.37

LDSR was used to estimate the genetic correlation 
between cannabis use disorder and a broad measure of 
maximum cannabis use frequency. Linear regression 
was then used to examine the extent to which polygenic 
risk scores (PRS) for cannabis use disorder predicted a 
pseudocontinuous measure of self-reported cannabis use 
frequency, while covarying for age, sex, and 20 ancestral 
principal components (appendix p 16). PRSice-238 was 
also used to do gene-set enrichment using gene sets and 
pathways from the Molecular Signatures Database.39

PRS for cannabis use disorder were computed using 
PRS-CS40 for each of the 66 915 genotyped individuals of 
European descent in BioVU (appendix pp 16–17). 
Genotyping and quality control of this sample have been 
described elsewhere.41 A logistic regression model was 
fitted to each of 1335 case or control phenotypes that had 
at least 100 cases to estimate the odds of each diagnosis 
given the PRS for cannabis use disorder, after adjustment 
for sex, median age of the longitudinal electronic health 
record measurements, and the top ten ancestral principal 
controls. To explore whether pleiotropic effects of the 
PRS for cannabis use disorder were mediated by smoking 
behaviours, we did two phenotype-wide association study 
(PheWAS) sensitivity analyses: a PheWAS on summary 
statistics of cannabis use disorder that had been 
conditioned on the top smoking initiation loci using 
mtCOJO,35 and a PheWAS using a diagnosis of tobacco 
use disorders as an additional covariate in the regression 
model, which is a conservative over-correction given the 
extremely high comorbidity expected between cannabis 
use disorder and tobacco use disorder. We used a 
Bonferroni-corrected phenome-wide significance thresh
old of 3·74 × 10−⁵; this is overly conservative because it 
incorrectly assumes independence between phenotypes. 
PheWAS analyses were run using the PheWAS 
R package, version 0.12.42

Data from the Adolescent Brain Cognitive Development 
Study (Registered; ABCD study)43 (data release 2.0.1) were 
used to test the association of PRS for cannabis use 
disorder with brain structure among 4539 cannabis-naive 
children (through self-reporting or hair toxicology) of 
European ancestry (mean age 9·93 years [SD 0·63], 
2125 [47%] were girls; appendix p 17). Total bilateral white 
matter volume, grey matter volume, and intracranial 
volume were estimated using FreeSurfer 5.3.44 PRS from 
the cannabis use disorder GWAS were generated at 
nine p value thresholds (ie, p<0·0001, p<0·001, p<0·01, 
p<0·10, p<0·20, p<0·30, p<0·40, p<0·50, and p<1·00), as 
were PRS for cannabis use.5 Linear mixed models were 
used to include scanner (for imaging analyses) and family 
as nested random effects, done using the lme4 package in 
R, version 3.6.0. All analyses included as fixed effect 
covariates the first 20 ancestral principal components, 
age, sex, age by sex, parents combined income, caregiver 
education, genotyping batch, caregiver’s marital status, 
prenatal cannabis exposure before and after knowledge of 
pregnancy, and twin status. Multiple testing within each 
brain structure phenotype was accounted for by applying 
random field theory correction across p value thresholds, 
as this method directly models the overlap across the 
different PRS thresholds and corrects for the statistical 
dependence among them.45

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. The corresponding author had full 

https://github.com/Nealelab/UK_Biobank_GWAS
https://abcdstudy.org/
https://abcdstudy.org/
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Results
We identified two genome-wide significant loci in the 
transancestral meta-analysis of cannabis use disorder 
(African and European ancestries, 20 916 cases, 
363 116 controls; appendix pp 17, 20). These loci were 
significant in the European ancestry meta-analysis but 
did not reach significance in the much smaller 
African ancestry analysis (17 068 cases, 357 219 controls vs 
3848 cases, 5897 controls; table 2). The lead SNPs 
were rs4732724 on chromosome 8 (ptransancestral=2·64 × 10–⁹, 
pEuropean=6·46 × 10–⁹, pAfrican=0·70) and rs7783012 on 
chromosome 7 (ptransancestral=2·43 × 10–⁹, pEuropean=1·84 × 10–⁹, 
pAfrican=0·09), with the same direction of effect observed 
for both ancestries. No additional ancestry-specific loci 
were observed.

Based on effect sizes and linkage disequilibrium 
from the case-control European ancestry meta-analysis 
(cases 14 080, controls 343 726), the genome-wide signifi
cant locus on chromosome 8 contains a single association 
(independent at R²<0·1) with lead SNP rs4732724 (odds 
ratio [OR] 0·89, 95% CI 0·86–0·93, SE 0·02; 
p=6·46 × 10−⁹; figure 1, appendix pp 21–23). This locus 
was previously associated with cannabis use disorder in 
the iPSYCH sample3 and includes eQTLs for CHRNA2 

(cholinergic receptor nicotinic α2 subunit) in the 
cerebellum and cerebellar hemisphere and EPHX2 
(epoxide hydrolase 2) in the cerebellum and adipose 
tissue. One genome-wide significant variant in the 
chromosome 8 locus (rs1565735) had a CADD score of 
13·28, indicating high probability of deleteriousness 
(appendix p 17). There were additional eQTL signals at 
this chromosome 8 locus, for CCDC25 (coiled-coil 
domain containing 25, in nucleus accumbens, multiple 
SNPs), CLU (clusterin, in adipose, rs2640724), and 
STMN4 (stathmin 4, in prefrontal cortex, rs78875955 and 
rs72477506; appendix p 25).

The chromosome 7 locus is located in an intron of 
FOXP2 (Forkhead box protein P2, index SNP, rs7783012; 
OR 1·11, 95% CI 1·07–1·15, SE 0·02; p=1·84 × 10−⁹; 
figure 1, appendix pp 21–22, 24). The index variant was 
an eQTL for FOXP2 in brain (prefrontal cortex, anterior 
cingulate cortex) and adipose tissue, and demonstrated 
chromatin interactions with FOXP2, MDFIC, and 
MIR3666 (appendix p 26).

Inflation in the test statistics (λ=1·10) probably reflects 
the polygenic architecture of cannabis use disorder, a 
conclusion supported by LDSR (LDSR intercept 0·99). 
Conditioning the summary statistics of cannabis use 
disorder on the lead SNP in each genome-wide significant 
locus, rs7783012 and rs4732724, did not reveal additional 
independent significant findings.

Position SNP Effect 
allele

deCODE 
OR (SE)

deCODE 
p value

iPSYCH 
OR (SE)

iPYSCH 
p value

PGC 
EUR 
unrel 
OR 
(SE)

PGC EUR 
unrel 
p value

PGC 
EUR 
comp 
Z score

PGC EUR 
comp 
p value

EUR 
meta-
analysis 
OR 
(SE)*

EUR 
meta-
analysis 
p value*

Trans
ancestral 
Z score†

Trans
ancestral 
p value†

Chromosome 7 114 116 881 rs7783012 A 1·10 
(0·03)

5·32 × 10⁻⁴ 1·09 
(0·03)

2·58 × 10⁻³ 1·11 
(0·03)

9·56 × 10⁻⁵ 3·47 5·22 × 10⁻⁴ 1·11 
(0·02)

1·84 × 10⁻⁹ 5·97 2·43 × 10⁻⁹

Chromosome 8 27 432 062 rs4732724‡ C 0·90 
(0·03)

3·03 × 10⁻⁴ 0·84 
(0·03)

5·73 × 10⁻⁸ 0·98 
(0·04)

0·616 –1·91 0·056 0·89 
(0·02)

6·46 × 10⁻⁹ –5·95 2·64 × 10⁻⁹

comp=complete meta-analysis (including related individuals and summary statistic cohorts). EUR=European ancestry. OR=odds ratio. PGC=Psychiatric Genomics Consortium. SNP=single nucleotide 
polymorphism. unrel=unrelated genotyped meta-analysis. *Complete deCODE, iPSYCH, and PGC EUR meta-analysis (excluding related individuals and summary statistic cohorts in the PGC). †Transancestral 
meta-analysis with deCODE, iPSYCH, and PGC samples (including related individuals and summary statistic cohorts). ‡SNP was only present in half of the PGC samples.

Table 2: Association statistics for the lead genome-wide significant SNPs across each of the three primary samples (deCODE, iPSYCH, PGC) in the European ancestry and transancestral 
meta-analyses
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Figure 1: Manhattan plot of the European ancestry-only genome-wide meta-analysis
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For the Picopili pipeline see 
https://github.com/

Nealelab/picopili

For the PredictDB Data 
Repository see 

http://predictdb.org

For GWAS of cannabis use 
frequency see see https://
github.com/Nealelab/UK_

Biobank_GWAS

For the Adolescent Brain 
Cognitive Development Study 

see https://abcdstudy.org/

The gene-wise association analysis of European ancestry 
summary statistics identified three significant genes 
(α=2·664 × 10–⁶): FOXP2 (p=7·31 × 10–⁸), PDE4B 
(p=6·66 × 10–⁷), and ENO4 (p=3·51 × 10–⁸; appendix p 17, 27). 
No pathways were significant (appendix p 18). Three genes, 
NAT6 (amygdala, cortex, frontal cortex), HYAL3 (both 
adipose tissues, whole blood, cerebellum, frontal cortex, 
hippocampus, nucleus accumbens, and spinal cord), and 
IFRD2 (cerebellum) were significantly related to cannabis 
use disorder through genetically regulated gene expression 
(appendix pp 18, 28). Connecting SNPs to genes via 
chromatin interaction data revealed significant associations 
in adult brain tissue (ten genes), fetal brain tissues 
(12 genes), iPSC-derived astrocytes (11 genes), and iPSC-
derived neurons (eight genes); these genes included 
HYAL3, ENO4, CHRNA2, and FOXP2 (appendix pp 18, 29).

The SNP-heritability (h²SNP) for cannabis use disorder was 
0·067–0·121 (SE 0·006–0·011) on the liability scale, 

depending on the estimated population prevalence and 
h²SNP 0·02 (SE 0·002) on the raw scale. Cannabis use 
disorder showed significant rg with 16 of the 23 studied 
phenotypes, for which the strongest relationships were 
observed with smoking initiation36 (rg 0·66, p=3·20 × 10–⁸³), 
Townsend Deprivation Index (a measure of regional 
poverty46; rg 0·58, p=3·30 × 10–³⁷), educational attainment47 
(rg –0·39, p=6·70 × 10–³⁴), and age at which first child is born 
(rg –0·49; p=5·40 × 10–²⁸; figure 2, appendix p 18). Thus, 
increased risk of cannabis use disorder is genetically 
correlated with increased liability for smoking initiation, 
living in an area of high material poverty, having children at 
an early age, and low levels of educational attainment. 
Liability to cannabis use disorder was also positively 
genetically correlated with alcohol use,36 nicotine depen
dence,48 psychiatric disorders (eg, ADHD,20 schizophrenia,37 
major depression),49 and body-mass index (BMI).50

The rg between cannabis use and cannabis use disorder 
was 0·50 (SE 0·05, p=1·50 × 10–²¹). Of the eight genome-
wide significant SNPs associated with cannabis use, only 
four had p<0·05 in the meta-analysis of cannabis use 
disorder (modest sample overlap between the two studies: 
genetic covariance intercept 0·014 [SE 0·005]).5 Con
ditioning the summary statistics of cannabis use disorder 
for loci associated with cannabis use neither substantially 
modified the effect sizes of the genome-wide signifi
cant loci (rs4732724, β=–0·11, SE 0·02, p=8·25 × 10–⁹; 
rs7783012, β=0·10, SE 0·02, p=2·62 × 10–⁹) nor identified 
additional novel loci (appendix p 18). The heritability of 
cannabis use disorder adjusted for cannabis use loci 
(using mtCOJO35) was 0·095 (SE 0·01) on the liability 
scale (estimated population prevalence 8·5%).

The rgs with cannabis use disorder and cannabis use 
were significantly different for 12 of the 22 traits compared 
(figure 2, appendix p 18). Cannabis use5 and cannabis use 
disorder were positively genetically correlated with liability 
to smoking initiation, schizophrenia, major depressive 
disorder, risk tolerance, and the Townsend Deprivation 
Index. Cannabis use5 was positively genetically correlated 
with educational achievement and later age at birth of first 
child, and negatively with BMI. In contrast, cannabis use 
disorder was genetically correlated with low education 
attainment, early age at birth of first child, and high BMI. 
Liability to cannabis use disorder was genetically correlated 
with nicotine dependence (rg 0·48, p=1·35 × 10–⁹), whereas 
the genetic correlation of this trait with cannabis use was 
not significant (p=0·44). In contrast, cannabis use was 
significantly genetically correlated with chronotype 
(rg –0·24, p=6·40 × 10–¹⁹), whereas cannabis use disorder 
showed no significant correlation with this trait (p=0·18). 
Conditioning the rg of cannabis use disorder on cannabis 
use loci (with p<0·001) made little difference in the 
magnitude of the rgs (appendix p 18).

We found no evidence of genetically causal relation
ships between liability to cannabis use disorder and to 
any of the most highly correlated traits (ie, educational 
attainment, age at first birth, Townsend Deprivation 
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Figure 2: Genetic correlations between CUD, cannabis use, and other traits of interest
CUD=cannabis use disorder. GWAS=genome-wide association studies. rg=genetic correlation. *Significantly 
genetically correlated with CUD. †Significantly different correlations between CUD and cannabis use (α=0·002).
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Figure 3: PheWAS 
associations between 
polygenic risk for CUD and 
phenotypes in the BioVU 
biobank
The 46 phenotypes shown are 
significantly associated with 
CUD (p<3·74 × 10–⁵, corrected 
for 1335 phenotypes tested). 
CUD=cannabis use disorder. 
PheWAS=phenotype-wide 
association study. NOS=not 
otherwise specified. 
SIRS=systemic inflammatory 
response syndrome.
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Index, smoking initiation, or ADHD; genetic causality 
proportion 0·05–0·27, p=0·128–0·856; appendix p 18).

Liability to cannabis use disorder and maximum 
cannabis use frequency in the UK Biobank were 
genetically correlated (rg 0·75, p=1·80 × 10–⁶). PRS for 
cannabis use disorder were significantly associated 
with our pseudocontinuous measure of cannabis use 
frequency in the UK Biobank (maximum R² 0·04%, 
Z 7·42, p=1·15 × 10–¹³, threshold p<0·3; appendix p 18, 30). 
65 of 12 461 gene sets and pathways were significantly 
enriched, highlighting involvement of CNS morpho
genesis (transcription factor Nkx–2·2 target genes, 
R² 0·02%, Z 4·46, p=8·22 × 10–⁶) and immune responses 
to exogenous compounds (ZFP91 target genes R² 0·01%, 
Z 4·41, p=1·01 × 10–⁵; CD4+ T-cell R² 0·02%, Z 4·41, 
p=3·79 × 10–⁶; and macrophage gene sets R² 0·01%, 
Z 4·62, p=1·04 × 10–⁵; appendix p 18).

Of 1335 phenotypes in the BioVU biobank, 46 were 
significantly associated with the PRS for cannabis use 
disorder (p<3·74 × 10–⁵; figure 3, appendix p 18). The 
phenotype groups with the most abundant associations 
were mental disorders (n=12), the strongest associations 
being with tobacco use disorder (cases 5280, OR 1·18, 
95% CI 1·13–1·23, SE 0·02; p=2·66 × 10–²⁷) and substance 
use disorders (cases 6155, OR 1·18, SE 0·01, 95% CI 
1·16–1·20; p=1·24 × 10–³⁰), mood disorders (cases 9588, 
OR 1·09, SE 0·01, 95% CI 1·07–1·11; p=2·38 × 10–¹²) and 
suicidal ideation or attempt (cases 689, OR 1·27, SE 0·04, 
95% CI 1·17–1·37; p=1·81 × 10–⁹); respiratory diseases 
(n=12), such as respiratory failure (cases 4485, OR 1·11, 
SE 0·02, 95% CI 1·07–1·15; p=4·45 × 10–¹⁰) or chronic 
airway obstruction (cases 4436, OR 1·13, SE 0·02, 95% CI 
1·09–1·18; p=5·64 × 10–¹⁴); endocrine or metabolic 
conditions (n=3), such as disorders of fluid (cases 12 562, 
OR 1·06, SE 0·01, 95% CI 1·04–1·08; p=5·77 × 10–⁸); 
infectious diseases (n=4), such as viral hepatitis 

(cases 135, OR 1·3, SE 0·03, 95% CI 1·23–1·38; 
p=3·34 × 10–²⁰); and digestive diseases (n=3), including 
cirrhosis of liver (cases 1928, OR 1·14, SE 0·02, 95% CI 
1·10–1·19; p=2·49 × 10–⁸).

A secondary pheWAS analysis in BioVU using 
summary statistics of cannabis use disorder conditioned 
on smoking initiation revealed attenuated findings, with 
only ten codes now passing Bonferroni corrections; 
anxiety disorder, viral hepatitis, and several respiratory 
codes were still significant. When we conditioned the 
pheWAS on tobacco use disorder, some associations 
remained significant (respiratory conditions, viral hepa
titis), whereas other associations (eg, anxiety disorder) 
were no longer associated with PRS for cannabis use 
disorder (appendix p 18).

The PRS for cannabis use disorder were significantly 
associated with reduced total white matter volume in 
cannabis-naive children from the ABCD Study (stand
ardised β=–0·04; p=0·001; figure 4), explaining up to 
0·18% of the variance in white matter volume at the most 
predictive threshold of p<0·5 (appendix p 18). Children 
in the highest quartile of PRS, on average, had a white 
matter volume that was 1% lower than those in the lowest 
quartile. Results remained significant when including 
intracranial volume as a covariate (standardised β=–0·08, 
p=0·01) and when excluding 1246 (27%) of 4539 children 
who used any substance (standardised β=–0·05, 
p=0·001), or when excluding 2482 (54%) of 4539 who 
used any substance or were prenatally exposed to any 
substance (standardised β=–0·05, p=0·03). The PRS for 
cannabis use were not significantly correlated with white 
matter volume (figure 3). After correction for multiple 
testing, there was no association between PRS for 
cannabis use disorder or cannabis use and grey matter 
volume (all p>0·01; appendix p 18, 31).

Discussion
This GWAS meta-analysis confirmed one previously 
identified locus on chromosome 8 as associated with 
cannabis use disorder and identified a new locus on 
chromosome 7. The lead variant at the chromosome 7 
locus (rs7783012) is a cis-eQTL for FOXP2 expression in 
brain and adipose tissue. FOXP2 was also significantly 
implicated in gene-based tests that incorporated 
information about chromatin interactions in iPSC-
derived astrocytes (appendix p 29). rs7783012 has also 
been associated with measures related to externalising 
behaviours (eg, ADHD,20 age at first sexual intercourse,51 
generalised risk tolerance)52 and with educational 
attainment.47 FOXP2 is essential to synaptic plasticity and 
has been implicated in the normal development of 
speech and language acquisition53 However, because of 
the prominence of the protein product of FOXP2 as a 
regulator of numerous genes, indirect pathways of 
vulnerability beyond risk-taking are also possible.

Individual SNPs on chromosome 8 are eQTLs for 
CHRNA2 and EPHX2, extending previous work by 
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Figure 4: Polygenic risk score associations with white matter volume in drug-naive children
Total white matter volume was regressed on polygenic risk scores for CUD and cannabis use (in separate models). 
CUD=cannabis use disorder.
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Demontis and colleagues3 in iPSYCH, with replication in 
the deCODE data. Note that iPSYCH and deCODE are 
the main contributors to this finding in the meta-analysis 
(piPSYCH=5·73 × 10–⁸, pdeCODE=0·0003, pPGC=0·06; appendix 
p 23). A large GWAS of schizophrenia54 has also implicated 
this variant (p=3·68 × 10–⁶), but conditioning for top 
schizophrenia loci did not modify the association with 
cannabis use disorder (p=4·33 × 10–⁸; appendix p 18). 
Given the role of CHRNA2 variants in tobacco smoking,36 
it is plausible that the findings for cannabis use disorder 
and schizophrenia are partially driven by the high rates of 
tobacco use in those populations.55 However, conditioning 
cannabis use disorder on the GWAS of cigarettes per 
day increased the significance of the lead variant 
rs4732724 (p=4·16 × 10–⁹; appendix p 18), although a 
different SNP was identified as the lead SNP (rs11783093). 
When rs11783093 was conditioned for the GWAS 
of smoking initiation, the signal was attenuated 
(p=1·55 × 10–⁶; appendix p 18). These findings suggest that 
the chromosome 8 signal might be partly driven by 
smoking initiation, or indicative of a pleiotropic effect 
with a stronger impact on cannabis use disorder than on 
smoking initiation.36 Despite the plausibility of CHRNA2 
in the cause of cannabis use disorder, it is worth noting 
that EPHX2, which is involved in the metabolism of 
cannabinoids,56–58 was also identified in eQTL analyses but 
not supported by other post-hoc analyses (appendix p 29).

Cannabis use and cannabis use disorder were modestly 
genetically correlated (rg 0·50) but conditioning for 
cannabis use loci did not substantially reduce the 
heritability of cannabis use disorder, and although it 
reduced the significance of the top loci, the effect sizes 
remained consistent. Although this does not fully account 
for possible index-event bias,59 it suggests that the findings 
are not due to cannabis exposure alone. Cannabis use and 
cannabis use disorder also show divergent genetic 
relationships with educational attainment,47 BMI,50 and 
age at birth of first child, with cannabis use disorder 
indexing greater impairment in these psychosocial and 
anthropometric indices than cannabis use. This 
divergence is similar to that found between alcohol intake 
and alcohol use disorder.7,8

We found genetic overlap between cannabis use 
disorder and several mental health phenotypes, respira
tory illnesses, and infectious diseases in the BioVU 
biobank. The strongest association was with tobacco use 
disorder, but conditioning for loci associated with 
smoking initiation retained many of the pheWAS 
associations at significant levels, including anxiety, 
phobic and dissociative disorders, respiratory failure, 
and viral hepatitis. An even more stringent analysis 
that covaried for tobacco use disorder revealed inde
pendent associations with viral hepatitis, type 1 diabetes, 
respiratory measures, and pain, but not mental health. 
These associations could reflect genuine pleiotropy 
(eg, with risk-taking behaviours and injection drug use) 
or index putatively causal peripheral effects of cannabis. 

Cannabis use frequency in the UK Biobank was 
genetically correlated with cannabis use disorder as well, 
but, similarly to other psychiatric and behavioural traits,60 
the PRS for cannabis use disorder explained only a small 
proportion of variance in cannabis use frequency 
(R² 0·04%).

Some previous cross-sectional studies have linked 
differences in grey matter volume with cannabis use and 
dependence;61 however, a large mega-analysis did not find 
reductions in global or regional volumes in cannabis-
dependent adults compared with controls.62 In our study, 
the association between PRS for cannabis use disorder 
and white matter volume persisted in the subset of 
children who were not exposed to any substance, including 
prenatally. This finding suggests that polygenic liability 
for cannabis use disorder might index differences in white 
matter volume in the developing brain, independently of 
the onset of substance use behaviours. Still, the association 
between PRS for cannabis use disorder and white matter 
was small (R² 0·15–0·18%), and additional studies are 
needed to confirm this association.

Some limitations are noteworthy. Our African ancestry 
sample was under-powered; more data are needed, 
particularly in light of potential disparities that result 
from a majority of genetic studies focusing on 
European-ancestry populations.63,64 We had little or no 
information regarding comorbid psychiatric disorders 
for the majority of PGC samples; however, we did 
conditional analyses to account for these and it made 
little difference. Information regarding lifetime cannabis 
exposure and the potency of cannabis used was scarce. 
Our estimates of genome-wide SNP-h² were far lower 
than the h² estimated from twin and family studies 
(0·07–0·12 vs 0·5–0·7). This discrepancy between 
pedigree-estimated heritability and SNP-heritability is 
common across essentially all substance use disorders, 
and might be due to low power, some heritability residing 
in variants too rare to be included in our GWAS, and 
insufficient coverage of optimal common-variant 
genomic coverage in available microarray data even after 
imputation. An additional limitation is that we did not do 
formal Mendelian randomisation65 analysis. To do this 
analysis, we would have needed to remove sample 
overlap between our cannabis use disorder GWAS and 
the other GWASs of interest, which would have greatly 
decreased our statistical power. However, after doing 
latent causal variable analyses,34 an approach related to 
mendelian randomisation that can account for sample 
overlap among the input GWAS, there was no significant 
evidence of causal relationships between liability to 
cannabis use disorder and to any of the top genetically 
correlated traits: educational attainment, age at first birth, 
Townsend Deprivation Index, smoking initiation, or 
ADHD (appendix p 16). Overall, estimates of genetic 
overlap might also be sensitive to sample characteristics, 
such as older volunteers in the UK Biobank cohort66 and 
some younger registry-based cohorts in our GWAS. In 
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addition, imbalance between cases and controls could 
have affected our findings, although we did not observe 
substantial genetic heterogeneity (appendix pp 23–24).

In conclusion, our findings provide further evidence 
that cannabis use disorder is a serious, psychiatric illness 
with genetic and neurobiological influences that diverge 
at least partially from cannabis use. From a public health 
perspective, the recognition that cannabis use disorder is 
a serious form of psychopathology should spur efforts to 
identify and aid at-risk individuals in the face of escalating 
cannabis use worldwide, especially among adolescents.
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