599 research outputs found

    Neuroimaging Biomarkers of mTOR Inhibition on Vascular and Metabolic Functions in Aging Brain and Alzheimer’s Disease

    Get PDF
    The mechanistic target of rapamycin (mTOR) is a nutrient sensor of eukaryotic cells. Inhibition of mechanistic mTOR signaling can increase life and health span in various species via interventions that include rapamycin and caloric restriction (CR). In the central nervous system, mTOR inhibition demonstrates neuroprotective patterns in aging and Alzheimer’s disease (AD) by preserving mitochondrial function and reducing amyloid beta retention. However, the effects of mTOR inhibition for in vivo brain physiology remain largely unknown. Here, we review recent findings of in vivo metabolic and vascular measures using non-invasive, multimodal neuroimaging methods in rodent models for brain aging and AD. Specifically, we focus on pharmacological treatment (e.g., rapamycin) for restoring brain functions in animals modeling human AD; nutritional interventions (e.g., CR and ketogenic diet) for enhancing brain vascular and metabolic functions in rodents at young age (5–6 months of age) and preserving those functions in aging (18–20 months of age). Various magnetic resonance (MR) methods [i.e., imaging (MRI), angiography (MRA), and spectroscopy (MRS)], confocal microscopic imaging, and positron emission tomography (PET) provided in vivo metabolic and vascular measures. We also discuss the translational potential of mTOR interventions. Since PET and various MR neuroimaging methods, as well as the different interventions (e.g., rapamycin, CR, and ketogenic diet) are also available for humans, these findings may have tremendous implications in future clinical trials of neurological disorders in aging populations

    Ketogenic Diet Enhances Neurovascular Function with Altered Gut Microbiome in Young Healthy Mice

    Get PDF
    Neurovascular integrity, including cerebral blood flow (CBF) and blood-brain barrier (BBB) function, plays a major role in determining cognitive capability. Recent studies suggest that neurovascular integrity could be regulated by the gut microbiome. The purpose of the study was to identify if ketogenic diet (KD) intervention would alter gut microbiome and enhance neurovascular functions, and thus reduce risk for neurodegeneration in young healthy mice (12–14 weeks old). Here we show that with 16 weeks of KD, mice had significant increases in CBF and P-glycoprotein transports on BBB to facilitate clearance of amyloid-beta, a hallmark of Alzheimer’s disease (AD). These neurovascular enhancements were associated with reduced mechanistic target of rapamycin (mTOR) and increased endothelial nitric oxide synthase (eNOS) protein expressions. KD also increased the relative abundance of putatively beneficial gut microbiota (Akkermansia muciniphila and Lactobacillus), and reduced that of putatively pro-inflammatory taxa (Desulfovibrio and Turicibacter). We also observed that KD reduced blood glucose levels and body weight, and increased blood ketone levels, which might be associated with gut microbiome alteration. Our findings suggest that KD intervention started in the early stage may enhance brain vascular function, increase beneficial gut microbiota, improve metabolic profile, and reduce risk for AD

    Teleology and Realism in Leibniz's Philosophy of Science

    Get PDF
    This paper argues for an interpretation of Leibniz’s claim that physics requires both mechanical and teleological principles as a view regarding the interpretation of physical theories. Granting that Leibniz’s fundamental ontology remains non-physical, or mentalistic, it argues that teleological principles nevertheless ground a realist commitment about mechanical descriptions of phenomena. The empirical results of the new sciences, according to Leibniz, have genuine truth conditions: there is a fact of the matter about the regularities observed in experience. Taking this stance, however, requires bringing non-empirical reasons to bear upon mechanical causal claims. This paper first evaluates extant interpretations of Leibniz’s thesis that there are two realms in physics as describing parallel, self-sufficient sets of laws. It then examines Leibniz’s use of teleological principles to interpret scientific results in the context of his interventions in debates in seventeenth-century kinematic theory, and in the teaching of Copernicanism. Leibniz’s use of the principle of continuity and the principle of simplicity, for instance, reveal an underlying commitment to the truth-aptness, or approximate truth-aptness, of the new natural sciences. The paper concludes with a brief remark on the relation between metaphysics, theology, and physics in Leibniz

    Organic residue analysis shows sub-regional patterns in the use of pottery by Northern European hunter–gatherers

    Get PDF
    The introduction of pottery vessels to Europe has long been seen as closely linked with the spread of agriculture and pastoralism from the Near East. The adoption of pottery technology by hunter–gatherers in Northern and Eastern Europe does not fit this paradigm, and its role within these communities is so far unresolved. To investigate the motivations for hunter–gatherer pottery use, here, we present the systematic analysis of the contents of 528 early vessels from the Baltic Sea region, mostly dating to the late 6th–5th millennium cal BC, using molecular and isotopic characterization techniques. The results demonstrate clear sub-regional trends in the use of ceramics by hunter–gatherers; aquatic resources in the Eastern Baltic, non-ruminant animal fats in the Southeastern Baltic, and a more variable use, including ruminant animal products, in the Western Baltic, potentially including dairy. We found surprisingly little evidence for the use of ceramics for non-culinary activities, such as the production of resins. We attribute the emergence of these subregional cuisines to the diffusion of new culinary ideas afforded by the adoption of pottery, e.g. cooking and combining foods, but culturally contextualized and influenced by traditional practices

    Obesity and osteoarthritis in knee, hip and/or hand: An epidemiological study in the general population with 10 years follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is one of the most important risk factors for osteoarthritis (OA) in knee(s). However, the relationship between obesity and OA in hand(s) and hip(s) remains controversial and needs further investigation. The purpose of this study was to investigate the impact of obesity on incident osteoarthritis (OA) in hip, knee, and hand in a general population followed in 10 years.</p> <p>Methods</p> <p>A total of 1854 people aged 24–76 years in 1994 participated in a Norwegian study on musculoskeletal pain in both 1994 and 2004. Participants with OA or rheumatoid arthritis in 1994 and those above 74 years in 1994 were excluded, leaving n = 1675 for the analyses. The main outcome measure was OA diagnosis at follow-up based on self-report. Obesity was defined by a body mass index (BMI) of 30 and above.</p> <p>Results</p> <p>At 10-years follow-up the incidence rates were 5.8% (CI 4.3–7.3) for hip OA, 7.3% (CI 5.7–9.0) for knee OA, and 5.6% (CI 4.2–7.1) for hand OA. When adjusting for age, gender, work status and leisure time activities, a high BMI (> 30) was significantly associated with knee OA (OR 2.81; 95%CI 1.32–5.96), and a dose-response relationship was found for this association. Obesity was also significantly associated with hand OA (OR 2.59; 1.08–6.19), but not with hip OA (OR 1.11; 0.41–2.97). There was no statistically significant interaction effect between BMI and gender, age or any of the other confounding variables.</p> <p>Conclusion</p> <p>A high BMI was significantly associated with knee OA and hand OA, but not with hip OA.</p

    Allergenic Lipid Transfer Proteins from Plant-Derived Foods Do Not Immunologically and Clinically Behave Homogeneously: The Kiwifruit LTP as a Model

    Get PDF
    BACKGROUND: Food allergy is increasingly common worldwide. Tools for allergy diagnosis measuring IgE improved much since allergenic molecules and microarrays started to be used. IgE response toward allergens belonging to the same group of molecules has not been comprehensively explored using such approach yet. OBJECTIVE: Using the model of lipid transfer proteins (LTPs) from plants as allergens, including two new structures, we sought to define how heterogeneous is the behavior of homologous proteins. METHODS: Two new allergenic LTPs, Act d 10 and Act c 10, have been identified in green (Actinidia deliciosa) and gold (Actinidia chinensis) kiwifruit (KF), respectively, using clinically characterized allergic patients, and their biochemical features comparatively evaluated by means of amino acid sequence alignments. Along with other five LTPs from peach, mulberry, hazelnut, peanut, mugwort, KF LTPs, preliminary tested positive for IgE, have been immobilized on a microarray, used for IgE testing 1,003 allergic subjects. Comparative analysis has been carried out. RESULTS: Alignment of Act d 10 primary structure with the other allergenic LTPs shows amino acid identities to be in a narrow range between 40 and 55%, with a number of substitutions making the sequences quite different from each other. Although peach LTP dominates the IgE immune response in terms of prevalence, epitope recognition driven by sequence heterogeneity has been recorded to be distributed in a wide range of behaviors. KF LTPs IgE positive results were obtained in a patient subset IgE positive for the peach LTP. Anyhow, the negative results on homologous molecules allowed us to reintroduce KF in patients' diet. CONCLUSION: The biochemical nature of allergenic molecule belonging to a group of homologous ones should not be taken as proof of immunological recognition as well. The availability of panels of homologous molecules to be tested using microarrays is valuable to address the therapeutic intervention

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase δCP\delta_{CP} can be determined to better than 19 degrees for all possible values of δCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3σ3\,\sigma (5σ5\,\sigma) for 7676% (5858%) of the δCP\delta_{CP} parameter space
    corecore