88 research outputs found

    Non-Myelinating Schwann Cells in Health and Disease

    Get PDF
    Non-myelinating Schwann cells (NMSCs) are one of the two major phenotypes of Schwann cells. NMSCs are of different types and have various locations. In the peripheral nervous system, NMSC, named Remak Schwann cells (RSC), accommodate multiple small-caliber axons, forming Remak bundles. NMSC, named perisynaptic/terminal Schwann cells, are found at the distal end of motor nerve terminals at the neuromuscular junction (NMJ). Thus, NMSCs proved to serve different functions according to their distribution such as maintenance of the axon and NMJ, peripheral nerve regeneration, or remodeling of the NMJ. Schwann cells (SCs) retain their proliferation capacity in the case of nerve injury or demyelination and provide support for the neuronal cells through paracrine signaling. Here we present an overview of their phenotypes and tissue distribution focusing on their emerging involvement in various peripheral nerve diseases

    The Potential Benefits of Drug-Repositioning in Muscular Dystrophies

    Get PDF
    Muscular dystrophies (MDs) are a complex group of rare neuromuscular disorders caused by genetic mutations that progressively weaken the muscles, resulting in an increasing level of disability. The underlying cause of these conditions consists of mutations in the genes in charge of a person’s muscle composition and functionality. MD has no cure, but medications and therapy can help control symptoms and slow the disease’s progression. Effective treatments have yet to be developed, despite the identification of the genetic origins and a thorough knowledge of the pathophysiological alterations that these illnesses induce. In this scenario, there is an urgent need for novel therapeutic options for these severe illnesses, and drug repositioning might be one feasible answer. In other words, drug repositioning/repurposing is an accelerated method of developing novel pharmaceuticals since the new indication is based on previously accessible safety, pharmacokinetic, and manufacturing data. This is particularly crucial for individuals with life-threatening illnesses such as MDs, who cannot wait for a conventional medication development cycle. This chapter aims to review the challenges and opportunities of drug-repositioning in a variety of MDs to establish novel treatment approaches for these incurable diseases

    Part Two: Extracellular Vesicles as a Risk Factor in Neurodegenerative Diseases

    Get PDF
    Extracellular vesicles (EVs) involved in the intercellular communication hold cell-specific cargos that contain proteins, various species of RNA and lipids. EVs are emerging as powerful tools for diagnosis and therapy in most diseases but little is known about their role in central nervous system (CNS) physiology or disease. Considering the extraordinary intricated cytoarchitecture of the brain, the implication of EVs in its pathophysiology is difficult to establish. Blood circulating EVs derived from local or distant vascular cells or EVs released from brain into the cerebrospinal fluid (CSF) may influence the brain activity. EVs released in the blood stream from various tissues may influence the brain by passing through the blood-brain barrier (BBB) or through choroid plexus. Since the choroid plexus has also a clearance role, it might be possible that EVs carrying brain abnormal proteins to pass into the blood can be detected. Thus, considering that EVs are specialized cargos bearing combined signals between cells, they might be an interesting therapy target in the future for both regulating neurogenesis and abnormal protein clearance. We present here data gathered about EVs that may influence the CNS functionality and be involved in most common neurodegenerative diseases

    Part One: Extracellular Vesicles as Valuable Players in Diabetic Cardiovascular Diseases

    Get PDF
    Extracellular vesicles (EVs) are particles released in the extracellular space from all cell types in physiological and pathological conditions and emerge as a new way of cell-cell communication by transferring their biological contents into target cells. The levels and composition of circulating EVs differ from a normal condition to a pathological one, making them real circulating biomarkers. EVs have a very complex contribution in both health and disease, most likely in relationship between diabetes and cardiovascular disease. The involvement of EVs to the development of cardiovascular complications in diabetes remains an open discussion for therapists. Circulating EVs may offer a continuous access path to circulating information on the disease state and a new perspective in finding a correct diagnosis, in estimating a prognosis and also in applying an effective therapy. Besides their role as biomarkers and targets for therapy, EVs can be exploited as biological tools in influencing the different processes affected in diabetic cardiovascular diseases. This chapter will summarize the current knowledge about EVs as biological vectors modulating diabetic cardiovascular diseases, including atherosclerosis, coronary artery disease, and peripheral arterial disease. Finally, we will point out EVs’ considerable value as clinical biomarkers, therapeutic targets, and potential biomedical tools for the discovery of effective therapy in diabetic cardiovascular diseases

    Serum and Fecal Markers of Intestinal Inflammation and Intestinal Barrier Permeability Are Elevated in Parkinson’s Disease

    Get PDF
    Parkinson’s disease (PD) is characterized by alpha-synuclein misfolding with subsequent intraneuronal amyloid formation and accumulation, low grade neuroinflammatory changes, and selective neurodegeneration. Available evidence suggests that the pathology usually begins in the gut and olfactory mucosa, spreading to the brain via the vagus and olfactory nerves, by a prion-like mechanism. A causal relationship has not been established, but gut dysbiosis is prevalent in PD and may lead to intestinal inflammation and barrier dysfunction. Additionally, epidemiological data indicate a link between inflammatory bowel diseases and PD. Calprotectin and zonulin are markers of intestinal inflammation and barrier permeability, respectively. We evaluated their serum and fecal levels in 22 patients with sporadic PD and 16 unmatched healthy controls. Mean calprotectin was higher in PD, both in serum (14.26 mcg/ml ± 4.50 vs. 5.94 mcg/ml ± 3.80, p = 0.0125) and stool (164.54 mcg/g ± 54.19 vs. 56.19 mcg/g ± 35.88, p = 0.0048). Mean zonulin was also higher in PD serum (26.69 ng/ml ± 3.55 vs. 19.43 ng/ml ± 2.56, p = 0.0046) and stool (100.19 ng/ml ± 28.25 vs. 37.3 ng/ml ± 13.26, p = 0.0012). Calprotectin was above the upper reference limit in 19 PD serums and 6 controls (OR = 10.56, 95% CI = 2.17–51.42, p = 0.0025) and in 20 PD stool samples and 4 controls (OR = 30, 95% CI = 4.75–189.30, p = 0.000045). Increased zonulin was found only in the stool samples of 8 PD patients. Despite the small sample size, our findings are robust, complementing and supporting other recently published results. The relation between serum and fecal calprotectin and zonulin levels and sporadic PD warrants further investigation in larger cohorts

    Plasticity of the Muscle Stem Cell Microenvironment

    Get PDF
    Satellite cells (SCs) are adult muscle stem cells capable of repairing damaged and creating new muscle tissue throughout life. Their functionality is tightly controlled by a microenvironment composed of a wide variety of factors, such as numerous secreted molecules and different cell types, including blood vessels, oxygen, hormones, motor neurons, immune cells, cytokines, fibroblasts, growth factors, myofibers, myofiber metabolism, the extracellular matrix and tissue stiffness. This complex niche controls SC biology-quiescence, activation, proliferation, differentiation or renewal and return to quiescence. In this review, we attempt to give a brief overview of the most important players in the niche and their mutual interaction with SCs. We address the importance of the niche to SC behavior under physiological and pathological conditions, and finally survey the significance of an artificial niche both for basic and translational research purposes

    Transcriptomic Crosstalk between Gliomas and Telencephalic Neural Stem and Progenitor Cells for Defining Heterogeneity and Targeted Signaling Pathways

    No full text
    Recent studies have begun to reveal surprising levels of cell diversity in the human brain, both in adults and during development. Distinctive cellular phenotypes point to complex molecular profiles, cellular hierarchies and signaling pathways in neural stem cells, progenitor cells, neuronal and glial cells. Several recent reports have suggested that neural stem and progenitor cell types found in the developing and adult brain share several properties and phenotypes with cells from brain primary tumors, such as gliomas. This transcriptomic crosstalk may help us to better understand the cell hierarchies and signaling pathways in both gliomas and the normal brain, and, by clarifying the phenotypes of cells at the origin of the tumor, to therapeutically address their most relevant signaling pathways
    • …
    corecore