32 research outputs found
Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe
The Extragalactic Background Light (EBL) includes photons with wavelengths
from ultraviolet to infrared, which are effective at attenuating gamma rays
with energy above ~10 GeV during propagation from sources at cosmological
distances. This results in a redshift- and energy-dependent attenuation of the
gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts
(GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray
blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using
photons above 10 GeV collected by Fermi over more than one year of observations
for these sources, we investigate the effect of gamma-ray flux attenuation by
the EBL. We place upper limits on the gamma-ray opacity of the Universe at
various energies and redshifts, and compare this with predictions from
well-known EBL models. We find that an EBL intensity in the optical-ultraviolet
wavelengths as great as predicted by the "baseline" model of Stecker et al.
(2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication
in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A.
Reimer, L.C. Reye
Bioisosterism of Fluorine and Cyano as Indole Substituents. Theoretical, in vitro and in vivo Examination
Fluorine substitution modifies structural attributes and often induces unexpected effects. When substituting fluorine with cyano in position 5 of the indole in indole-butyl-amines, the properties of the compounds proved to be very comparable. In vitro target-profile, metabolism,
and in vivo activity in the ultrasonic vocalisation test indicate bioisosterism between the two substituents
Influence of demographic changes on the impact of vaccination against varicella and herpes zoster in Germany – a mathematical modelling study
Abstract Background Epidemiological studies suggest that reduced exposure to varicella might lead to an increased risk for herpes zoster (HZ). Reduction of exposure to varicella is a consequence of varicella vaccination but also of demographic changes. We analyzed how the combination of vaccination programs and demographic dynamics will affect the epidemiology of varicella and HZ in Germany over the next 50 years. Methods We used a deterministic dynamic compartmental model to assess the impact of different varicella and HZ vaccination strategies on varicella and HZ epidemiology in three demographic scenarios, namely the projected population for Germany, the projected population additionally accounting for increased immigration as observed in 2015/2016, and a stationary population. Results Projected demographic changes alone result in an increase of annual HZ cases by 18.3% and a decrease of varicella cases by 45.7% between 1990 and 2060. Independently of the demographic scenario, varicella vaccination reduces the cumulative number of varicella cases until 2060 by approximately 70%, but also increases HZ cases by 10%. Unlike the currently licensed live attenuated HZ vaccine, the new subunit vaccine candidate might completely counteract this effect. Relative vaccine effects were consistent across all demographic scenarios. Conclusion Demographic dynamics will be a major determinant of HZ epidemiology in the next 50 years. While stationary population models are appropriate for assessing vaccination impact, models incorporating realistic population structures allow a direct comparison to surveillance data and can thus provide additional input for immunization decision-making and resource planning
RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses.
The receptor for hyaluronic acid-mediated motility (RHAMM) is an antigen eliciting both humoral and cellular immune responses in patients with acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). We initiated a phase 1 clinical trial vaccinating 10 patients with R3 (ILSLELMKL), a highly immunogenic CD8(+) T-cell epitope peptide derived from RHAMM. In 7 of 10 patients, we detected an increase of CD8(+)/HLA-A2/RHAMM R3 tetramer(+)/CD45RA(+)/CCR7(-)/CD27(-)/CD28(-) effector T cells in accordance with an increase of R3-specific CD8(+) T cells in enzyme linked immunospot (ELISpot) assays. In chromium release assays, a specific lysis of RHAMM-positive leukemic blasts was shown. Three of 6 patients with myeloid disorders (1/3 AML, 2/3 MDS) achieved clinical responses: one patient with AML and one with MDS showed a significant reduction of blasts in the bone marrow after the last vaccination. One patient with MDS no longer needed erythrocyte transfusions after 4 vaccinations. Two of 4 patients with MM showed a reduction of free light chain serum levels. Taken together, RHAMM-R3 peptide vaccination induced both immunologic and clinical responses, and therefore RHAMM constitutes a promising target for further immunotherapeutic approaches. This study is registered at http://ISRCTN.org as ISRCTN32763606 and is registered with EudraCT as 2005-001706-37