99 research outputs found

    Teacher Influence on Elementary School Students’ Participation in Science, Technology, Engineering, and Mathematics

    Get PDF
    The purpose of this study is to explore the influence of elementary school teachers on encouraging students’ interest and participation in Science, Technology, Engineering, and Mathematics. The researcher sought to understand what methods teachers use in their classrooms to encourage students to participate in STEM subjects and programs. This mixed methods study consisted of a questionnaire to collect quantitative data, as well as an interview of selected teachers who participated in the questionnaire to collect qualitative data. The data was analyzed to determine the overall perceptions of teachers regarding the importance of encouraging students to participate in STEM. The qualitative interview process was then used to explore in more detail what specific methods the teachers implemented to encourage students to participate in STEM. Results of this study suggest that the participants strongly agreed that it was important for students to be interested in STEM subjects and for teachers to encourage students’ interest in STEM subjects. However, the teachers did not as strongly agree in their abilities to effectively teach STEM content or make it fun and engaging for the students. This showed that the teachers’ belief in encouraging students to participate in STEM was more highly rated than their feeling of efficacy in teaching and engaging the students in STEM. The qualitative portion of this study revealed strategies used by veteran teachers who increased their teaching and engaging students in STEM subjects at the elementary level

    Undergraduate Research in Georgia Classrooms

    Get PDF
    Despite considerable research describing the positive outcomes of including undergraduate students in research inquiry and investigations (Desai, Gatson, Stiles, Stewart, Laine, & Quick, 2008; Narayanan, 1999; Russell, Hancock, & McCullough, 2007), very little action is taken to include education majors in research endeavors. While universities are seeking to find ways to include students earlier and more often in research projects, students’ perspectives on conducting their own research is overwhelmingly overlooked. The purpose of this symposium is to introduce undergraduate research in education to GERA and to expose these students to conference presentations. In recent years, the College of Education at Georgia Southern University has increased the number of students participating in research as well as provided them with solid initial classroom preparation and professional support to produce “highly efficacious” teachers. It is compelling to listen as they present their findings and discuss their experiences while completing their research investigations. By exploring their experiences, we could find trends to better assist in organizing possibilities and recreating opportunities for our future undergraduate students to explore their passions through research. Additionally, opportunities such as these may increase retention towards graduation and further graduate research experiences

    How Good a Clock is Rotation? The Stellar Rotation-Mass-Age Relationship for Old Field Stars

    Full text link
    The rotation-mass-age relationship offers a promising avenue for measuring the ages of field stars, assuming the attendant uncertainties to this technique can be well characterized. We model stellar angular momentum evolution starting with a rotation distribution from open cluster M37. Our predicted rotation-mass-age relationship shows significant zero-point offsets compared to an alternative angular momentum loss law and published gyrochronology relations. Systematic errors at the 30 percent level are permitted by current data, highlighting the need for empirical guidance. We identify two fundamental sources of uncertainty that limit the precision of rotation-based ages and quantify their impact. Stars are born with a range of rotation rates, which leads to an age range at fixed rotation period. We find that the inherent ambiguity from the initial conditions is important for all young stars, and remains large for old stars below 0.6 solar masses. Latitudinal surface differential rotation also introduces a minimum uncertainty into rotation period measurements and, by extension, rotation-based ages. Both models and the data from binary star systems 61 Cyg and alpha Cen demonstrate that latitudinal differential rotation is the limiting factor for rotation-based age precision among old field stars, inducing uncertainties at the ~2 Gyr level. We also examine the relationship between variability amplitude, rotation period, and age. Existing ground-based surveys can detect field populations with ages as old as 1-2 Gyr, while space missions can detect stars as old as the Galactic disk. In comparison with other techniques for measuring the ages of lower main sequence stars, including geometric parallax and asteroseismology, rotation-based ages have the potential to be the most precise chronometer for 0.6-1.0 solar mass stars.Comment: For a brief video explaining the key results of this paper, see http://www.youtube.com/user/OSUAstronom

    International Space Station Spacecraft Charging Environments: Modeling, Measurement and Implications for Future Human Space Flight Programs

    Get PDF
    Spacecraft charging analysis and migration is an interdisciplinary subject combining aspects of electrostatics, plasma physics, ionizing radiation, and materials science, as well as electronic system electromagnetic interference and compatibility (EMI/EMC) effects. Spacecraft charging hazards are caused by the accumulation of electrical charge on spacecraft and spacecraft components produced by interactions with space plasmas, energetic charged particles, and solar UV photons as well as spacecraft electrical power and propulsion systems operations. Spacecraft charging hazard effects include both hard and soft avionics and electrical power system anomalies and have led to the partial or complete loss of numerous spacecraft. The International Space Station (ISS) orbital altitude and inclination (~400 km and 51.6o) determined the dominant natural environment factors affecting ISS spacecraft charging; high speed flight through the geomagnetic field and electrical power system interaction with the cold, high-density ionospheric plasma. In addition ISS is exposed to energetic auroral electrons at high latitude. In this paper we present the results of ISS spacecraft charging modeling and measurements and compare the measurements with numerical modeling of ISS charging processes. ISS is a large metallic structure and flight through the geomagnetic field at orbital speed dominates ISS charging. Collection of ionospheric electrons by the large 160V PV arrays is the next largest contributor. Charging by auroral electrons is detectable but makes a relatively minor contribution. Finally we report the observation of short duration (~ 1 sec) rapid charging peaks associated with shunt/un-shunt operations of the 160V PV arrays, a phenomena not predicted before flight. ISS spacecraft charging environments are radically different from those encountered at higher altitudes in Earth?s magnetosphere and in cis-Lunar space. We present a brief review of those charging environments and an assessment of the applicability of ISS spacecraft charging management and experience to future human spaceflight programs beyond LEO

    Medical imaging of pulmonary disease in SARS-CoV-2-exposed non-human primates

    Get PDF
    Chest X-ray (CXR), computed tomography (CT), and positron emission tomography-computed tomography (PET-CT) are noninvasive imaging techniques widely used in human and veterinary pulmonary research and medicine. These techniques have recently been applied in studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to complement virological assessments with meaningful translational readouts of lung disease. Our review of the literature indicates that medical imaging of SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative characterization of disease otherwise clinically invisible and potentially provides user-independent and unbiased evaluation of medical countermeasures (MCMs). However, we also found high variability in image acquisition and analysis protocols among studies. These findings uncover an urgent need to improve standardization and ensure direct comparability across studies

    Chemical and Pb Isotope Composition of Phenocrysts from Bentonites Constrains the Chronostratigraphy around the Cretaceous-Paleogene Boundary in the Hell Creek Region, Montana

    Get PDF
    An excellent record of environmental and paleobiological change around the CretaceousPaleogene boundary is preserved in the Hell Creek and Fort Union Formations in the western Williston Basin of northeastern Montana. These records are present in fluvial deposits whose lateral discontinuity hampers long-distance correlation. Geochronology has been focused on bentonite beds that are often present in lignites. To better identify unique bentonites for correlation across the region, the chemical and Pb isotopic composition of feldspar and titanite has been measured on 46 samples. Many of these samples have been dated by 40Ar/39Ar. The combination of chemical and isotopic compositions of phenocrysts has enabled the identification of several unique bentonite beds. In particular, three horizons located at and above the Cretaceous-Paleogene boundary can now be traced—based on their unique compositions—across the region, clarifying previously ambiguous stratigraphic relationships. Other bentonites show unusual features, such as Pb isotope variations consistent with magma mixing or assimilation, that will make them easy to recognize in future studies. This technique is limited in some cases by more than one bentonite having compositions that cannot be distinguished, or bentonites with abundant xenocrysts. The Pb isotopes are consistent with a derivation from the Bitterroot Batholith, whose age range overlaps that of the tephra. These data provide an improved stratigraphic framework for the Hell Creek region and provide a basis for more focused tephrostratigraphic work, and more generally demonstrate that the combination of mineral chemistry and Pb isotope compositions is an effective technique for tephra correlation

    Animal models for COVID-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (frst detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the fndings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.info:eu-repo/semantics/acceptedVersio

    The TESS Grand Unified Hot Jupiter Survey. I. Ten TESS Planets

    Get PDF
    We report the discovery of ten short-period giant planets (TOI-2193A b, TOI-2207 b, TOI-2236 b, TOI-2421 b, TOI-2567 b, TOI-2570 b, TOI-3331 b, TOI-3540A b, TOI-3693 b, TOI-4137 b). All of the planets were identified as planet candidates based on periodic flux dips observed by NASA's Transiting Exoplanet Survey Satellite (TESS). The signals were confirmed to be from transiting planets using ground-based time-series photometry, high angular resolution imaging, and high-resolution spectroscopy coordinated with the TESS Follow-up Observing Program. The ten newly discovered planets orbit relatively bright F and G stars (G<12.5G < 12.5,~TeffT_\mathrm{eff} between 4800 and 6200 K). The planets' orbital periods range from 2 to 10~days, and their masses range from 0.2 to 2.2 Jupiter masses. TOI-2421 b is notable for being a Saturn-mass planet and TOI-2567 b for being a ``sub-Saturn'', with masses of 0.322±0.0730.322\pm 0.073 and 0.195±0.0300.195\pm 0.030 Jupiter masses, respectively. In most cases, we have little information about the orbital eccentricities. Two exceptions are TOI-2207 b, which has an 8-day period and a detectably eccentric orbit (e=0.17±0.05e = 0.17\pm0.05), and TOI-3693 b, a 9-day planet for which we can set an upper limit of e<0.052e < 0.052. The ten planets described here are the first new planets resulting from an effort to use TESS data to unify and expand on the work of previous ground-based transit surveys in order to create a large and statistically useful sample of hot Jupiters.Comment: 44 pages, 15 tables, 21 figures; revised version submitted to A
    • …
    corecore