
National Aeronautics and 

Space Administration
National Aeronautics and 

Space Administration

National Aeronautics and 
Space Administration

International Space 
Station Spacecraft 

Charging Environments:

Modeling, Measurement, 
and Implications for 
Future Human Space 

Flight Programs

FPMU (Floating Potential Measurement Unit)

Steve Koontz , John Alred, Erica Worthy, NASA Johnson Space Center, Houston, Texas, 77058 

Emily Willis , NASA Marshall Space flight Center, Huntsville, Alabama, 35811

Courtney Steagall, William Hartman, Benjamin Gingras, William Schmidl, The Boeing Company, Houston, TX 77059 USA

https://ntrs.nasa.gov/search.jsp?R=20200001582 2020-03-28T19:15:48+00:00Z



National Aeronautics and 

Space Administration
National Aeronautics and 

Space Administration

Executive Summary

 Hazard Cause - Accumulation of electrical charge on spacecraft and spacecraft components 
produced by:
 Spacecraft interactions with space plasmas, energetic particle streams, and solar UV photons  (free electrons 

and photons typically drive these processes)

 Spacecraft electrical power and propulsion system operations

 Hazard Effects
 Electrical discharges leading to:

 Radiated and conducted “static” noise in spacecraft avionics systems 

 Failure of spacecraft electrical power system components 

 Failure of spacecraft avionics (C&DH, C&T, GN&C) hardware

 “Static” noise and possible hardware damage on docking of two spacecraft at very different electrical 
potentials (first contact bleed resistors don't always work here…)

 Hazard Controls
 “Safe and verified design” – follow NASA and DoD standards and guidelines

 Materials selection, grounding, bonding, and EMI/EMC compatibility, and screen for/eliminate 
potentially hazardous configurations, verified during acceptance testing (not everyone knows what 
the requirement means or how to verify it)

 Active charging controls (e.g., plasma contactor units or something like that) 

 In-flight operational hazard controls (if all else fails and assuming there are any)

 “Test like you fly and fly like you test” (to the extent possible given schedule and budget constraints)

 I there a high degree of similarity between ISS LEO natural or induced spacecraft charging 
environments and processes and those expected during cis-lunar and interplanetary missions?
 NO!
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Presentation Outline

 Introduction and Background
 Spacecraft Charging Environments and Processes

 Spacecraft Charging Hazard Causes and Hazard Effects

 Spacecraft Charging Processes and Dependencies 

 Space Plasmas and Energetic Particles

 Some Examples of Spacecraft Charging Effects

 LEO/ISS Charging Environments, Processes, and Effects
 Cold/high density plasma and geomagnetic field

 ISS PV Array Driven charging

 Motional EMF  driven charging

 Auroral Electron Charging in LEO and low (<1000 km) Polar Orbit

 Surface and structure charging

 ISS Spacecraft Charging Measurement and Control
 Plasma Contactors and the floating potential measurement unit

 ISS in-flight charging measurements

 Where else do we expect to encounter ISS/LEO charging environments beyond LEO?

 “Exploration” Spacecraft Charging Environments
 Natural environments - Hot/low density plasma and energetic particles

 Radiation belt transit, geo-tail, solar particle events

 Spacecraft induced environments

 Electric propulsion system operations

 So what do I do about all this and what happens if I don’t?

 Summary and Conclusions 3
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Spacecraft Charging Environments and 
Processes: 

Introduction and Background
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Spacecraft Charging Environments 

and Processes: General Principles

Why do we care about this?

 Safety, Reliability, and Mission Success

 If not accounted for during spacecraft 

design development and test:

 You may get lucky and operate 

successfully via workarounds 

 Or you may fail to achieve mission 

objectives, operational reliability 

requirements, or in extreme cases, loose 

the entire spacecraft (e.g., ADEOS-II 

and  DSCS-9431)

 The most common hazard effects of the 

spacecraft charging hazard cause are:

 Avionics system failures and anomalies

 Electrical power system failures and 

anomalies

 Surface performance property 

degradation caused by arcing

 Increased attitude control propellant 

use rates (energetic surface arcing can 

be propulsive)
5

Aerospace Corp. Report TR-2000(8570)-2; 28 February, 2001

Mak Tafazoli; “A study of on-orbit spacecraft failures,”

Acta Astronautica, Volume 64, Issues 2–3, 2009, 195–205

See back-up for more on this)

Table 1. Distribution of Records by Anomaly Diagnosis 

Diagnosis 

ESD-lntemai Charging 

ESD-Surface Charging 

ESD-Uncategorized 

Single-Event Effects 

Damage 

Micrometeoroid/Debris I mpace 

Miscellaneous 

E!I 2% 

~ 2% 

[J 3% 

Space environment 

m 8% rra 1% 

§I 84% 

Number of Records 

No 

74 

59 

28 

85 

16 

10 

26 

Magnetic stonn 

Meteorites 

~ Solar eclipse 

DI Solar storm 

§ Space debris 
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Spacecraft Charging Environments 

and Processes: 

Spacecraft Charging Summary

 Spacecraft Charging:

 Processes that produce an electrical potential or voltage difference between 

the spacecraft and the surrounding space plasma environment (absolute 

charging) and/or voltage differences between electrically isolated parts of 

the spacecraft (differential charging)

 Electrical potential differences result from the separation of positive and 

negative charges, in the spacecraft, in the flight environment, or both with 

accumulation of an excess of one charge on the spacecraft or spacecraft 

components. 

 Current balance equations model the ion and electron currents to and from 

the spacecraft

 During charging and discharging, electrical currents will flow through or onto 

various parts of the spacecraft, and those currents can be damaging.

 Simple resistor/capacitor charging circuits can give you a feel for how this 

works (examples later in this presentation)

 Conductors and dielectrics charge and discharge in very different ways

6
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 Spacecraft mission environments and velocity with respect to plasma or local 

magnetic fields

 Flight environment and mission timeline determine charging processes

 Spacecraft current and voltage sources interacting with the local environment

 Can drive current collection to and from the space plasma environment

 Area of spacecraft metallic material exposed to energetic charged particle flux 

or ambient plasma 

 Current collection into spacecraft conducting structure and circuitry 

 Electrical properties of spacecraft materials

 Secondary and photoelectron emission characteristics of the spacecraft materials

 Dielectric materials conductivity

 Dielectric material relaxation time

 Dielectric breakdown voltage 

 Are dielectrics static  dissipative?

Spacecraft mission environment, 

materials, configuration, con-ops

7
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Spacecraft Charging Environments 

and Processes: General Principles.

Internal vs. Surface Charging

8

• Electron kinetic energy is of primary importance here (protons are 
believed to be less important)

• Surface charging: 0 to 50 keV
• Solar UV photoelectron emission from spacecraft surfaces

• Ie = electron current incident on spacecraft surface(s)

• Iph = photoelectron current from spacecraft surfaces in sunlight, typically (material 
dependent) on the order of 10-9 amps/cm2 at Earth orbit and decreases as distance from 
the sun increases (1/R2)

• If  Iph > Ie, spacecraft surfaces charge to small positive values (~ +10V to +20V)

• Surface to internal charging transition: 50 to 100 keV
• Not mitigated by solar UV photoelectron emission

• Internal charging > 100 keV
• Not mitigated by solar UV photoelectron emission

• Practical range of concern for GEO/cis-Lunar  orbits:
• 0.1 to 3 MeV assuming ~ 0.08 to 0.3 cm Al shielding

• Generally not a concern in LEO except at high (>60 degrees) latitude

• “Grounded” conducting structure can also be a charging target and 
spacecraft electrical systems operations can be a charging cause
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• Plasma – an ionized gas that conducts electricity

• Consists of neutral atoms/molecules, electrons (e- ), and ions (i+)

• Displays collective behavior (plasma, not just an ionized gas) if -

• Debye Length (λd) << L (length of system),  and Plasma Parameter (Λ) >> 1

• Gas Kinetic Theory (Maxwell-Boltzmann Equation) applies

• All particles in a gas have the same temperature at equilibrium

• So all particles have the same average kinetic energy; vavg = [(2 k Ti)/( mi)]
1/2

• KEavg = ½ mvavg
2 =>  particle speed depends on mass

• All else being equal, electrons much faster than ions so that objects in the plasma tend 
to charge negative relative to the plasma in a way that depends on electron 
temperature and electron/ion mobility; 

• Important Plasma Parameters  

• λd - Plasmas can rearrange charges to exclude electric fields, like any conductor

• ωpe - Electron Plasma Frequency   

• Λ - Need a large number of particles inside the λd length for collective behavior

• FP - Floating potential of an object in the plasma

• Energetic Particles

• Auroral Electrons,  Relativistic Trapped Electrons, SPE Electrons and Protons

• Not a plasma effect - more like a high voltage power supply driving current onto and into the 
spacecraft

Space Plasmas and Energetic Particles

9
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The Numbers

Plasma
Density

ne(m
-3)

Electron 

Temperature

T(K)

Magnetic 

Field

B(T)

Debye 

Length

λD(m)

Electron 

Plasma 

Frequency 

(MHz)

Small Object  

FP (V)

Gas discharge
high density/hot

1016 105 -- 10−4 1000 -10

Ionosphere
high density/cold

(ISS)

1012 103 10−5 10−3 10 -1

Magnetosphere
low density/hot

(Orion/Gateway worst 

case and 

and Extreme 

Interplanetary*)

107 107 10−8 102 0.01
Day,  +10

Night, - 10K

Solar wind
low density/hot

(Nominal 

Interplanetary)

106 105 10−9 10 0.01
Sun, +10

Eclipse, -20 

10

E. C. Whipple, “Potentials of Surfaces in Space,”  Reports on Progress in Physics, Vol. 44, pp. 1197-1250, 1981

* Solar Particle Event and/or Coronal Mass Ejection passage 
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and Processes:
Metal structure with thin dielectric 

coating – ISS MM/OD shields

1) Active electron (-) collection by ISS PV arrays drives ISS conducting structure to negative FP

2) Ionospheric ions (+) attracted to negative structure and produce positive charge on thin dielectric 

(anodized Al) surface coatings

3) Dielectric breakdown arc plasma provides conductive path for capacitor discharge and degrades 

PTCS on MM/OD shields with both conducted and radiated EMI

+ + + + + + + + + + + + + + + + + + + + + + + +

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
C = eA/d

A = surface area of structural element

d= thickness of dielectric coating

e = dielectric constant

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ + + + + + + +                   + + + + + + + + + +

11
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Spacecraft Charging Environments 

and Processes: Summary

Dielectric breakdown in LEO

https://www.nasa.gov/offices/nesc/articles/understanding-the-potential-dangers-of-

spacecraft-charging

ESA EURECA satellite solar array sustained arc damage. 

Credits: ESA

Arc damage in laboratory tests of the chromic acid anodized 

thermal control coating covering ISS orbital debris shields.

Credits: NASA/T. Schneider
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https://www.nasa.gov/offices/nesc/articles/understanding-the-potential-dangers-of-spacecraft-charging
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13

Internal charging – how bad can it be?
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LEO/ISS Charging Environments, 
Processes, and Effects

14



National Aeronautics and 

Space Administration
National Aeronautics and 

Space AdministrationLEO Ionospheric Plasma and 
Geomagnetic Field Charging 

Environments 
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http://giro.uml.edu/IRTAM/fc = 9 𝑁𝑒 ; 𝑓𝑐, 𝐻𝑧; Ne, e-/m3

http://giro.uml.edu/IRTAM/
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LEO: Ionospheric Plasma 
and Geomagnetic Field 
Charging Environments 
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A Simple Worked Example:

Solar Array Driven Charging in 

LEO ( ~ ISS) 

1) Rectangular PV array (length L, width W) and string voltage V (end-to-end) in sunlight, with 

exposed metallic PV cell interconnects, a negative structure ground, and negligible capacitance.

2) We want to calculate the Floating Potential (FP, the voltage difference between a point on the PV 

string and the surrounding ionospheric plasma) as a function of position along the string.

3)   Now, calculate the steady-state current balance, Ji = Je.

Ji = NiqviAi and Je = 0.25 NeqveAe;

vi = VISS = 7.7 km/sec and  ve = 163 km/sec (corresponding to Te = 0.1 eV) 

Ae/Ai = Le/Li = vi/0.25ve = 7.69/40.75 = 0.19; 

4) The electron collecting area is a small fraction of the total area (and length) at steady-state and we can 

calculate FP voltage at each point along the PV array with this simple “toy” model.  

5) For a 160V string, the FP at the negative structure ground is about -130V and the FP at the positive 

end is about +30V.

6) This simple calculation works well for UARS, HTV,  and many other LEO satellites (even DMSP 

when ionospheric density is high enough at 800 km)

7) This is not what we see on ISS (worst case maximum expected is -80 volts and that very, very rarely) 

– WHY?

17
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A Simple Worked Example:

Solar Array Driven Charging in 

LEO ( ~ ISS) 

ISS doesn’t embody the assumptions underlying the simple model

• While it is true that Ae/Ai << 1  => 

Ri >> Re, but in fact Ri > Re 

because:

• 1) ISS has significant exposed 

conducting structure to increase 

ion collection

• 2) ISS PV array electron 

collection is limited by burying 

PV cell metallic interconnects and 

current collection busses in 

dielectric

• The steady-state assumption is not 

valid given the size of the charging 

currents and the size of the ISS 

capacitor

• 3) ISS capacitance >> 109 pF

• ISS FP is modeled accurately (for 

EVA safety assessments) using the 

Boeing Plasma Interaction Model 

(PIM)

18
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LEO Ionospheric Plasma and 
Geomagnetic Field Charging 

Environments 
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Another Simple Worked Example:

Motional EMF (magnetic induction 

charging) of ISS at high latitude 

• V = end-to-end voltage the spacecraft length L = 100 m for ISS Truss 

• v = spacecraft velocity = 7.67 km/sec

• B = geomagnetic field vector

• 400 km altitude and orbital inclination

51.60 => V ~ 50 V at high latitude

• Using the same simple, approximate 

charge balance analysis used for 

solar-array driven charging and 50 V 

instead of  160 V, the area ratios will be 

the same, with the negative end at about

- 42 V and the positive end at about + 8 V

• Motional EMF depends on orbital 

velocity and decreases with increasing 

altitude. Motional EMF is ~ 0 at GEO

and in cis-lunar space

Flying large metallic structures in LEO can lead to large motional EMF voltages across the 

structure as a result of the Lorentz force:  V = (v x B) . L

20
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Environments: Geomagnetic 

Storm and Aurora 

Video Simulation  Credit NASA GSFC

21
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LEO ISS Auroral
Charging Environments

“11:30:   Transited through a 

very unusual aurora field.  

Started as a faint green cloud 

on the horizon, which grew 

stronger as we approached.  

Aurora filled our view field 

from SM (Service Module) 

nadir ports as we flew through 

it.  A faint reddish plasma 

layer was above the green field 

and topped out higher than 

our orbital altitude.”

Excerpt from ISS Commander 

William Shepherd’s deck log of  

Nov. 10, 2000

22
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ISS Spacecraft Charging 
Measurement and Control
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Unit - 2006 to 2018

24

Note: The FPMU measures floating potential of 

conducting structure only, and does not measure 

surface charging
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Data Validation
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C/NOFS Coupled Ion-Neutral Dynamics 

Investigation (CINDI) Instrument Ni 

measurements compared with FPMU Langmuir 

Probe (WLP and NLP) Ne measurements. 

FPMU measurements of ionospheric density and temperature 

compared to Millstone ISR measurements made during an ISS 

overflight. Red refers to ionospheric temperature and blue to 

ionospheric density.  
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• ISS was in the +XVV flight attitude for

these measurements

• As ISS enters sunlight at the eclipse exit

point of its orbit, the solar arrays are

facing forward and charging ISS

batteries and are completely unregulated.

They are optimally configured to collect

ionospheric electrons

• As ISS batteries approach a fully charged

state, solar array downregulation begins

so as not to overcharge the batteries

• If nominally sun tracking, the PV arrays

will no longer be facing forward after

orbital noon and wake effects will further

suppress electron collection

• Peaks in the FP are sometimes observed

as the ISS flies through high Ne regions,

like the Appleton Anomaly, if the PV

arrays are still facing forward and

illuminated at orbital noon
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ISS Plasma Interaction 
Model (PIM) performance

27

ISS FP at the Port Truss tip location and FP values 

calculated for that location using the PIM ISS charging 

model

ISS FP at the Starboard Truss tip location and FP values 

calculated for that location using the PIM ISS charging 

model

ISS FP at the FPMU location and 

FP values calculated using the 

PIM ISS charging model
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Unit - 2006 to 2017

Solar Array Un-shunting (and Power on Reset, POR) Impact on ISS FP.  Other rapid FP increases have been 
observed without un-shunt or POR (correlated with very low ionospheric plasma density)

28



National Aeronautics and 

Space Administration
National Aeronautics and 

Space Administration

Another  Simple, Worked Example:
Auroral Charging vs. Capacitance

Effects of Spacecraft Capacitance (V = Q/C and C = A/d) on Auroral Charging

Auroral charging current =  2 x 10-5 amps/m 2 sec ; duration 10 sec.

Case Capacitance (pF) Floating Potential, (-Volts)

Sphere – free space (R=1 m) 111.26 30,000 (charging time < 1 second)

Sphere – 10-µ dielectric film 1.26  106 2000

Disk – free space ( R = 1m) 70.83 30,000 (charging time < 1 second)

Disk – 10-µ dielectric film 3.3  105 3806

Estimated International Space 

Station 

1.1  1010 ~ 13

Extravehicular Mobility Unit 1.5  106 ~ 27

29
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And how does that compare to ISS 
flight experience (FPMU data)

Auroral charging events have been 

observed in the FPMU data during 

eclipse at high latitudes.  These events 

correlate with local electron density 

(Ne) enhancements caused by the 

heating  and collisional ionization of 

the plasma.

The ISS was in the auroral zone for 

144 seconds; however the times when 

the FP was rising (i.e.,when ISS 

experienced discrete auroral events) 

were much shorter (~12 seconds).

-18V observed compares well with the 
-13V estimate in the worked example 
table

11/19/2015, Boeing Company, Drew Hartman, Leonard Kramer, 

Randy Olsen: ISS Space Environments SPRT meeting
30
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flight experience (FPMU+DMSP 
data)

11/19/2015, Boeing Company, Drew Hartman, Leonard Kramer, 

Randy Olsen;  ISS Space Environments SPRT meeting

Defense Meteorological Satellite 

Program (DMSP) data (GMT 2008_86) 

show a large frequency of current 

densities above 2x10-5 A/m2 along the 

ISS charging event flight path
http://www.ospo.noaa.gov/Operations/DMSP/

The red line (corresponding to 144 

seconds of flight time) displays the ISS 

trajectory where current densities can 

exceed 2x10-5 A/m2.

The model of auroral current collection 

by ISS anodized Al materials (auroral

electrons can penetrate 30 micron 

chromic anodize coatings) is supported 

by the timelines and magnitudes of 

DMSP current densities.

31
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“Exploration” (Cis-Lunar, 
Magnetospheric, and 

Interplanetary) Spacecraft 
Charging Environments 

32
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And where else might we encounter 

ionospheric plasmas and magnetic 

fields like those in LEO?

• Strong planetary magnetic fields?

• In the inner solar system, only Earth and Mercury have 
significant magnetic fields

• The Mercuric field is only about 1% as strong as Earth’s

• The Moon, Mars, Venus, and the near-Earth and main 
belt asteroids have insignificant global magnetic fields

• Cold, dense, ionospheric plasmas like Earth’s?

• Venus below about 420 km altitude

• Mars below about 200 km altitude

• And one other place you might not immediately 
expect…

33
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• Surrounding your > 200+ kilowatt class, “high” 
thrust, interplanetary transport with electric 
propulsion whenever the Hall effect, 
electrostatic, or VASMIR engines are operating

• If EPS is photovoltaic, you can expect high PV 
string voltages ( > 160V) for efficiency and 
large PV areas for total power requirement

• Some risk questions to consider:

• How much PV array-driven spacecraft charging 
can I expect when the electric engines are 
operating? 

• None if your PCUs are operating

• What happens to vehicle floating potential when 
the high voltage strings are un-shunted?

• What happens if the electric engine neutralizers 
(e.g, PCUs) degrade or fail? 

• Will the PV arrays and power cables be at risk 
for arc tracking? 

• Nuclear power reduces risk, but doesn’t 
eliminate it

• thermoelectric power conversion can also lead to 
high voltage strings exposed to the plasma (NASA 
SP-100) 
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/
19890003294.pdf )

Image credit:ATK Corp.

34

Ira Katz, Alejandro Lopez Ortega, Dan M. Goebel, Michael J. 

Sekerak, Richard R. Hofer, Benjamin A. Jorns, John R. Brophy; 

“EFFECT OF SOLAR ARRAY PLUME INTERACTIONS ON 

HALL THRUSTER CATHODE COMMON POTENTIALS,”  14 th

Spacecraft Charging Technology Conference, ESA/ESTEC, 

Noordwijk, NL, 04-08 APRIL 2016 

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890003294.pdf
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Magnetospheric, Cis-Lunar, 

and Interplanetary Spacecraft 
Charging Environments

http://artemis.igpp.ucla.edu/news.shtml

https://www.fourmilab.ch/earthview/moon_ap_per.html

35

http://artemis.igpp.ucla.edu/news.shtml
https://www.fourmilab.ch/earthview/moon_ap_per.html
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and Interplanetary Spacecraft 

Charging Environments

• The magentospheric/GEO/cis-Lunar and NEI natural charging environments are 
radically different from the ISS LEO charging environments

• Hot plasmas and energetic charged particles dominate the “Exploration” natural charging 
environments

• The SLS/Orion Joint Program Natural Environments Definition for Design Specification, SLS-
SPEC-159 REVISION E July 14, 2017 calls out the full range of design environment for missions 
from LEO to cis-lunar Space

• MPCV 70080, May, 13, 2015, “Cross Program Electromagnetic Environmental Effects (E3) 
Requirements Document, Section 3.7, Electrostatic Charge Control”, contains specific design 
requirements for charging hazard mitigation and control, often derived from NASA/DoD standards 
for GEO/interplanetary spacecraft

• Exploration mission timelines/trajectories lead to flight through several different charging 
environments with different exposure times in each environment

• Expected extensive use of electric propulsion creates induced charging environments that will also 
need assessment and possibly hazard controls

• The neutral current sheet and geotail region of Earth’s magnetosphere are of special 
importance

• The Moon is in the geotail/neutral-current-sheet for a few days every month around full moon as 
viewed from Earth

• The lunar spacecraft charging environment is comparable to the GEO charging environment during 
those times as shown by spacecraft measurements

• The geotail/neutral-current-sheet region can be affected by geomagnetic storms

• Transient space weather events such as Coronal Mass Ejections (CMEs) and Solar 
Particle Events (SPE) can also pose as yet poorly characterized charging threats to cis-
lunar spacecraft 36
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Space AdministrationCis-Lunar Charging Environments:
Spacecraft charging measurements in cis-lunar 

space

• The Moon has no atmosphere capable of blocking solar wind plasma or energetic particles

• Orbiting spacecraft and the lunar surface are exposed to similar charging threat environments

• Lunar Orbital/Surface Charging Threat Environments 

• Earth’s magneto-tail (current sheet) hot plasma electrons - A few days on each side of full moon 
as viewed form Earth

• Solar Particle Events (energetic electrons and protons)

• Lunar Prospector cis-lunar Charging Observations - SPE

• Lunar surface night-side surface potentials to -4.5 kV

• Spacecraft potentials to -100 to -300 V

• Lunar Prospector cis-lunar Charging Observations – Geotail current sheet region 

• Lunar surface potentials -100 V to -1000 V in sunlight

• Spacecraft potentials -40  to -80 V

• Artemis/Themis Charging Observations

• Lunar surface potentials -20 V to -600 V, depending on current sheet electron temperature

• Bottom line for now – cis-lunar environment can be similar to GEO and auroral charging 
environments, but less severe

• The GEO design environment should cover expected conditions

• However, more charging environment data is needed here 37
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So what do I do about all this and 
what happens if I don’t?
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So what do I do about all this?

• What are the spacecraft charging environments for the design reference missions, and does 
they cover reasonable worst-case conditions?

• How much charging can I expect  and when?

• How do I prevent the charging or render it harmless?
• Grounding, bonding, and EMI/EMC compatibility

• PC board design rules to minimize internal charging/discharging risks

• Eliminate potentially hazardous EPS/Avionics configurations

• Can I direct charging/discharging currents around or away from critical, sensitive equipment and 
astronauts?

• Materials selection and static dissipative coatings
• Is shielding mass for worst-case energetic electron charging environment possible?

• Can I select static dissipative or low-charging materials? 

• Active control during severe charging events (i.e., a PCU or something like it)

• Are there any options for operational hazard controls such as powering down high-voltage 
systems during extreme charging events?

• Become familiar with NASA and DoD Standards, Guidelines, and Preferred Practices for 
managing spacecraft charging

• Garrett, H. B., and A. C. Whittlesey. Guide to Mitigating Spacecraft Charging Effects, John Wiley 
and Sons, Hoboken, New Jersey, 2010

• https://descanso.jpl.nasa.gov/SciTechBook/st_series3_chapter.html

• See the JPL Voyager spacecraft charging design and verification process  - Voyager survived the 
Jupiter and Saturn fly-by environments only because charging hazards were mitigated by design and 
verification before flight

• A. C. Whittlesey, “Voyager electrostatic Discharge Protection Program,”  IEEE International 
Symposium on EMC, Atlanta Georgia, pp. 377-383, June 1978 39

https://descanso.jpl.nasa.gov/SciTechBook/st_series3_chapter.html
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And what happens if I don’t?

ADEOS – II:  Probable auroral
charging/discharging event, leading 

to loss of mission
• Orbit 

• Polar - Sun-synchronous 

• Orbit Altitude 802.92km 

• Inclination 98.62 deg

• Period 101 minutes 

• Failure

• On 23 October 2003, the solar electrical power system failed 

after passing though the auroral zone (high altitude)

• At 23:49 UTC, the satellite switched to "light load" operation 

because of an unknown error. This was intended to power down 

all observation equipment to conserve energy.

• At 23:55 UTC, communications between the satellite and the 

ground stations ended, with no further telemetry received.

• Further attempts to procure telemetry data on 24 October (at 

0025 and 0205 UTC) also failed.

• JAXA determined that the total loss of ADEOS-II, a PEO satellite with 

bus voltage of fifty volt, attributed to interaction between the auroral

electron/plasma environment and the improperly grounded MLI 

around  the main EPS wire harness causing a destructive “arc 

tracking” failure of the wire harness. 

• The loss of ADEOS-II investigation revealed that auroral charging of a 

polar satellite could cause serious failure, including total loss.

• MM/OD impact creating an arc plasma and triggering the main 

discharge on the power harness is another possibility
40

1) Kawakita, S., Kusawake, H., Takahashi, M. et al., 

“Investigation of Operational anomaly of ADEOS-II 

Satellite,” Proc. 9th Spacecraft Charging Technology 
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2) Nakamura, M., “Space Plasma Environment at the 

ADEOS-II anomaly,” Proc. 9th Spacecraft Charging 

Technology Conf., Tsukuba, Japan, 4-8 April 2005.
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ADEOS – II:  A more detailed 
failure analysis

• The power harness configuration itself, with opposite polarity power wires in contact 
with each other, presents a high arc-tracking risk

• The Tefzel power wire insulation was operating well above it’s recommended 
maximum service temperature leading to insulator degradation and cracking

• The satellite passed through the auroral region when the high energy (KeV) electron 
flux was two orders of magnitude higher than normal, charging the ungrounded MLI 
blanket and enabling arcing (trigger arc) to the power wires

• Trigger arcs lead to power wire arc tracking and loss of mission

• Note – steady thermal deterioration of the Tefzel insulation would likely have 
produced this outcome eventually, without help from the auroral charging 
environment 

41
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Summary and Conclusions

• ISS spacecraft charging processes are dominated by electron collection from Earth’s ionosphere 
• Voltage sources driving charging are generated by ISS itself

• Motional EMF in the geomagnetic field

• 160V PV power system operations
• Nominal eclipse exit charging

• Full PV wing shunt/un-shunt rapid charging peaks (duration depends on ionospheric density)

• Auroral (energetic charged particle) charging is minimal, largely because ISS vehicle capacitance is so large

• No evidence to date of auroral charging/arcing on isolated external dielectric materials

• Is ISS spacecraft charging management experience applicable to human rated spacecraft destined for 
cis-Lunar and interplanetary space?  Well, it depends…

• The magentospheric/GEO/cis-Lunar and NEI natural charging environments are radically different from the 
ISS LEO charging environments

• Energetic charged particles dominate the natural cis-Lunar and NEI spacecraft charging environments
• GEO/interplanetary spacecraft charging control design and verification processes are recommended in general

• Using ISS materials and methods without some delta verification to account for the new environment is NOT 
recommended

• No natural ionospheric plasma

• No significant motional EMF

• However, some specific ISS experience is relevant and applicable

• Rapid charging peaks from shunt/un-shunt operations on large high voltage/power PV arrays

• Artificial ionosphere charging effects from high power solar electric propulsion systems

• ISS EMI/EMC control and verification processes
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Spacecraft Surface Charging 

Environment Risks: Geo-space

Garrett, H. B., Whittlesey, A. C.; GUIDE TO MITIGATING SPACECRAFT  CHARGING  EF FECTS, John Wiley & Sons, 

Inc., Hoboken, New Jersey, 2012, page 2
45
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Garrett, H. B., Whittlesey, A. C.; GUIDE TO MITIGATING SPACECRAFT CHARGING EFFECTS, John Wiley & Sons, Inc., 

Hoboken, New Jersey, 2012, page 2 46
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• 4 orbits of FPMU data  - PCUs off

47



National Aeronautics and 

Space Administration
National Aeronautics and 

Space AdministrationISS Charging Measurements:
Floating Potential Measurement 

Unit - 2006 to 2017

• 4 orbits of FPMU data  - PCUs on

48


