184 research outputs found
Non-ST Elevation Myocardial Infraction after High Dose Intravenous Immunoglobulin Infusion
Intravenous immunoglobulins (IVIgs) are used for several indications, including autoimmune conditions. IVIg treatment is associated with several possible adverse reactions including induction of a hypercoagulable state. We report a 76-year-old woman treated with IVIg for myasthenia gravis, which developed chest pain and weakness following IVIg infusion. The symptoms were associated with ST segment depression in V4–6 and elevated troponin levels. The patient was diagnosed with non-ST elevation myocardial infarction (NSTEMI). The patient had no significant risk factor besides age and a cardiac perfusion scan was interpreted as normal (the patient refused to undergo cardiac catheterization). This case is compatible with IVIg-induced hypercoagulability resulting in NSTEMI. Cardiac evaluation should therefore be considered prior to initiation of IVIg treatment especially in patients with multiple cardiovascular risks
Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system
Rapid nerve impulse conduction in myelinated axons requires the concentration of voltage-gated sodium channels at nodes of Ranvier. Myelin-forming oligodendrocytes in the central nervous system (CNS) induce the clustering of sodium channels into nodal complexes flanked by paranodal axoglial junctions. However, the molecular mechanisms for nodal complex assembly in the CNS are unknown. Two isoforms of Neurofascin, neuronal Nfasc186 and glial Nfasc155, are components of the nodal and paranodal complexes, respectively. Neurofascin-null mice have disrupted nodal and paranodal complexes. We show that transgenic Nfasc186 can rescue the nodal complex when expressed in Nfasc−/− mice in the absence of the Nfasc155–Caspr–Contactin adhesion complex. Reconstitution of the axoglial adhesion complex by expressing transgenic Nfasc155 in oligodendrocytes also rescues the nodal complex independently of Nfasc186. Furthermore, the Nfasc155 adhesion complex has an additional function in promoting the migration of myelinating processes along CNS axons. We propose that glial and neuronal Neurofascins have distinct functions in the assembly of the CNS node of Ranvier
Distribution of different isoforms of receptor protein tyrosine phosphatase \u3b3 (Ptprg-RPTP \u3b3) in adult mouse brain: upregulation during neuroinflammation.
The receptor protein tyrosine phosphatase \u3b3 (Ptprg-RPTP\u3b3) is a receptor protein widely expressed in many tissues, including the central nervous system (CNS). Several RPTP\u3b3 isoforms are expressed in the brain during development and in adulthood, but their distribution and role are unknown. In this study, we investigated the distribution of some RPTP\u3b3 isoforms in the adult brain using antibodies against the epitopes localized in the C- and in the N-terminal domains of the full length isoform of RPTP\u3b3. We found a predominant and widespread neuronal positivity throughout the neocortex, hippocampus, striatum and in many nuclei of the brainstem and cerebellum. At least 2 distinct isoforms that can co-exist in various compartments in the same cell are detectable in different neuron types. Immunopositivity for epitopes located in both the N- and C-terminus domains were found in the neuropil of cortical and hippocampal neurons, whereas the N-terminal domain positivity was found in the soma, often without colocalization with its C-terminal counterpart. Among glial cells, some protoplasmic and perivascular astrocytes and the cerebellar Bergmann glia, express RPTP\u3b3. The astrocytic expression of RPTP\u3b3 and putative processing isoforms of 120 and 80 kDa increases during neuroinflammation, in particular 24 h after LPS treatment. Activated astrocytes were found to be strongly positive for RPTP\u3b3 also in a mice model of Alzheimer's disease. Our results confirm previous findings and enrich the current knowledge of RPTP\u3b3 distribution in the CNS, highlighting a role of RPTP\u3b3 during neuroinflammation processes
Id4 and FABP7 are preferentially expressed in cells with astrocytic features in oligodendrogliomas and oligoastrocytomas
BACKGROUND: Oligodendroglioma (ODG) and oligoastrocytoma (OAC) are diffusely infiltrating primary brain tumors whose pathogenesis remains unclear. We previously identified a group of genes whose expression was inversely correlated with survival in a cohort of patients with glioblastoma (GBM), and some of these genes are also reportedly expressed in ODG and OAC. We examined the expression patterns and localization of these survival-associated genes in ODG and OAC in order to analyze their possible roles in the oncogenesis of these two tumor types. METHODS: We used UniGene libraries derived from GBM and ODG specimens to examine the expression levels of the transcripts for each of the 50 GBM survival-associated genes. We used immunohistochemistry and cDNA microarrays to examine expression of selected survival-associated genes and Id4, a gene believed to control the timing of oligodendrocyte development. The expression of FABP7 and Id4 and the survival of patients with ODG and OAC were also analyzed. RESULTS: Transcripts of most survival-associated genes as well as Id4 were present in both GBM and ODG tumors, whereas protein expression of Id4 and one of the survival-associated genes, brain-type fatty acid-binding protein (FABP7), was present in cells with astrocytic features, including reactive and neoplastic astrocytes, but not in neoplastic oligodendrocytes. Id4 was co-expressed with FABP7 in microgemistocytes in ODG and in neoplastic astrocytes in OAC. Id4 and FABP7 expression, however, did not correlate with the clinical outcome of patients with ODG or OAC tumors. CONCLUSION: Expression of Id4 and some of our previously identified GBM survival-associated genes is present in developing or mature oligodendrocytes. However, protein expression of Id4 and FABP7 in GBM, ODG, and OAC suggests that this group of functionally important genes might demonstrate two patterns of expression in these glioma subtypes: one group is universally expressed in glioma cells, and the other group of genes is expressed primarily in neoplastic astrocytes but not in neoplastic oligodendrocytes. Differential protein expression of these two groups of genes in ODG and OAC may be related to the cellular origins and the histological features of the neoplastic cells
Erythropoietin increases myelination in oligodendrocytes: gene expression profiling reveals early induction of genes involved in lipid transport and metabolism
Several studies have shown that erythropoietin (EPO) has neuroprotective or neuroreparative actions on diseases of the nervous system, and that improves oligodendrocyte differentiation and myelination in vivo and in vitro. This study aims at investigating the early molecular mechanisms for the pro-myelinating action of EPO at the gene expression level.
For this purpose, we used a differentiating oligodendrocyte precursor cell line, rat CG4 cells. Cells were differentiated or not, and then treated with EPO for 1 or 20 h. RNA was extracted and changes in the gene expression profile were assessed using microarray analysis. Experiments were performed in biological replicates of n=4. Differentiation alone changed the expression of 11% of transcripts (2,663 out of 24,272), representing 2,436 genes, half of which were up-regulated and half down-regulated. At 20 h of treatment, EPO significantly affected the expression of 99 genes that were already regulated by differentiation and of 150 genes that were not influenced by differentiation alone. Analysis of the transcripts most up-regulated by EPO identified several genes involved in lipid transport (e.g. Cd36) and lipid metabolism (Ppargc1a/Pgc1alpha, Lpin1, Pnlip, Lpin2, Ppard, Plin2) along with Igf1 and Igf2, growth factors known for their pro-myelinating action. All these genes where only induced by EPO and not by differentiation alone, except for Pnlip which was highly induced by differentiation and augmented by EPO. Results were validated by quantitative PCR. These findings suggest that EPO might increase remyelination by inducing insulin-like growth factors and increasing lipid metabolism
Protein 4.1B Contributes to the Organization of Peripheral Myelinated Axons
Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber
Dysregulation of Gene Expression in a Lysosomal Storage Disease Varies between Brain Regions Implicating Unexpected Mechanisms of Neuropathology
The characteristic neurological feature of many neurogenetic diseases is intellectual disability. Although specific neuropathological features have been described, the mechanisms by which specific gene defects lead to cognitive impairment remain obscure. To gain insight into abnormal functions occurring secondary to a single gene defect, whole transcriptome analysis was used to identify molecular and cellular pathways that are dysregulated in the brain in a mouse model of a lysosomal storage disorder (LSD) (mucopolysaccharidosis [MPS] VII). We assayed multiple anatomical regions separately, in a large cohort of normal and diseased mice, which greatly increased the number of significant changes that could be detected compared to past studies in LSD models. We found that patterns of aberrant gene expression and involvement of multiple molecular and cellular systems varied significantly between brain regions. A number of changes revealed unexpected system and process alterations, such as up-regulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes. The involvement of multiple neural systems indicates that the mechanisms of neuropathology in this type of disease are much broader than previously appreciated. In addition, the variation in gene dysregulation between brain regions indicates that different neuropathologic mechanisms may predominate within different regions of a diseased brain caused by a single gene mutation
The cerebrospinal fluid proteome in HIV infection: change associated with disease severity
<p>Abstract</p> <p>Background</p> <p>Central nervous system (CNS) infection is a nearly universal feature of untreated systemic HIV infection with a clinical spectrum that ranges from chronic asymptomatic infection to severe cognitive and motor dysfunction. Analysis of cerebrospinal fluid (CSF) has played an important part in defining the character of this evolving infection and response to treatment. To further characterize CNS HIV infection and its effects, we applied advanced high-throughput proteomic methods to CSF to identify novel proteins and their changes with disease progression and treatment.</p> <p>Results</p> <p>After establishing an <it>accurate mass and time </it>(AMT) tag database containing 23,141 AMT tags for CSF peptides, we analyzed 91 CSF samples by LC-MS from 12 HIV-uninfected and 14 HIV-infected subjects studied in the context of initiation of antiretroviral therapy and correlated abundances of identified proteins a) within and between subjects, b) with all other proteins across the entire sample set, and c) with "external" CSF biomarkers of infection (HIV RNA), immune activation (neopterin) and neural injury (neurofilament light chain protein, NFL). We identified a mean of 2,333 +/- 328 (SD) peptides covering 307 +/-16 proteins in the 91 CSF sample set. Protein abundances differed both between and within subjects sampled at different time points and readily separated those with and without HIV infection. Proteins also showed inter-correlations across the sample set that were associated with biologically relevant dynamic processes. One-hundred and fifty proteins showed correlations with the external biomarkers. For example, using a threshold of cross correlation coefficient (Pearson's) ≤ -0.3 and ≥0.3 for potentially meaningful relationships, a total of 99 proteins correlated with CSF neopterin (43 negative and 56 positive correlations) and related principally to neuronal plasticity and survival and to innate immunity. Pathway analysis defined several networks connecting the identified proteins, including one with amyloid precursor protein as a central node.</p> <p>Conclusions</p> <p>Advanced CSF proteomic analysis enabled the identification of an array of novel protein changes across the spectrum of CNS HIV infection and disease. This initial analysis clearly demonstrated the value of contemporary state-of-the-art proteomic CSF analysis as a discovery tool in HIV infection with likely similar application to other neurological inflammatory and degenerative diseases.</p
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
- …