17 research outputs found

    Incorporation of Torsion Springs in a Knee Exoskeleton for Stance Phase Correction of Crouch Gait

    Get PDF
    Crouch gait is a motor complication that is commonly associated with cerebral palsy, spastic diplegia, stroke, and motor-neurological pathologies, broadly defined as knee flexion in excess of 20° in the gait cycle. Uncorrected crouch gait results in fatigue, joint degradation, and loss of ambulation. Torsion springs have been used in cycling to store energy in the knee flexion to reduce fatigue in the quadriceps during knee extension. SolidWorks was used to design a passive exoskeleton for the knee, incorporating torsion springs of stiffnesses 20,000 N/mm and 30,000 N/mm at the knee joint, to correct four different crouch gaits. OpenSim was used to gather data from the moments produced, and knee angles from each crouch gait and the normal gait. Motion analysis of the exoskeleton was simulated using knee angles for each crouch gait and compared with the moments produced with the normal gait moments in the stance phase of the gait cycle. All crouch gait moments were significantly reduced, and the correction of peak crouch moments was achieved, corresponding to the normal gait cycle during the stance phase. These results offer significant potential for nonsurgical and less invasive options for wearable exoskeletons in crouch gait correction

    Impaired perception of facial motion in autism spectrum disorder

    Get PDF
    Copyright: © 2014 O’Brien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Facial motion is a special type of biological motion that transmits cues for socio-emotional communication and enables the discrimination of properties such as gender and identity. We used animated average faces to examine the ability of adults with autism spectrum disorders (ASD) to perceive facial motion. Participants completed increasingly difficult tasks involving the discrimination of (1) sequences of facial motion, (2) the identity of individuals based on their facial motion and (3) the gender of individuals. Stimuli were presented in both upright and upside-down orientations to test for the difference in inversion effects often found when comparing ASD with controls in face perception. The ASD group’s performance was impaired relative to the control group in all three tasks and unlike the control group, the individuals with ASD failed to show an inversion effect. These results point to a deficit in facial biological motion processing in people with autism, which we suggest is linked to deficits in lower level motion processing we have previously reported

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI-1 on CHD risk. Methods and Results--To evaluate the association between PAI-1 and CHD, we applied a 3-step strategy. First, we investigated the observational association between PAI-1 and CHD incidence using a systematic review based on a literature search for PAI-1 and CHD studies. Second, we explored the causal association between PAI-1 and CHD using a Mendelian randomization approach using summary statistics from large genome-wide association studies. Finally, we explored the causal effect of PAI-1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta-analysis, the highest quantile of blood PAI-1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age- and sex-adjusted model. The effect size was reduced in studies using a multivariable-adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI-1 level on CHD risk (odds ratio=1.22 per unit increase of log-transformed PAI-1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI-1 on elevating blood glucose and high-density lipoprotein cholesterol. Conclusions--Our study indicates a causal effect of elevated PAI-1 level on CHD risk, which may be mediated by glucose dysfunction

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies

    Get PDF
    Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts

    The location of faults on electric lines and cables : a development of methods and equipment

    Get PDF
    Thesis (M.A.)--University of Kansas, Electrical Engineering, 1926

    Incorporation of Torsion Springs in a Knee Exoskeleton for Stance Phase Correction of Crouch Gait

    No full text
    Crouch gait is a motor complication that is commonly associated with cerebral palsy, spastic diplegia, stroke, and motor-neurological pathologies, broadly defined as knee flexion in excess of 20° in the gait cycle. Uncorrected crouch gait results in fatigue, joint degradation, and loss of ambulation. Torsion springs have been used in cycling to store energy in the knee flexion to reduce fatigue in the quadriceps during knee extension. SolidWorks was used to design a passive exoskeleton for the knee, incorporating torsion springs of stiffnesses 20,000 N/mm and 30,000 N/mm at the knee joint, to correct four different crouch gaits. OpenSim was used to gather data from the moments produced, and knee angles from each crouch gait and the normal gait. Motion analysis of the exoskeleton was simulated using knee angles for each crouch gait and compared with the moments produced with the normal gait moments in the stance phase of the gait cycle. All crouch gait moments were significantly reduced, and the correction of peak crouch moments was achieved, corresponding to the normal gait cycle during the stance phase. These results offer significant potential for nonsurgical and less invasive options for wearable exoskeletons in crouch gait correction
    corecore