65 research outputs found

    Simulating Divertor Detachment of Ohmic Discharges in ASDEX Upgrade Using SOLPS: the Role of Carbon

    Get PDF
    With divertor detachment being a prerequisite for burning plasma operation in ITER, numerical codes such as SOLPS [1] have been developed for predicting and interpreting the divertor performance at all operational regimes in current tokamaks and ITER. In ITER complete detachment from the outer divertor target is not permitted as this might result in an X-point MARFE, imposing an upper limit for the upstream separatrix density, n{sub e}{sup sep}. Despite the knowledge of the basic mechanisms required for achieving detachment, such as radiative power exhaust, volumetric momentum and charge removal [1], a quantitative evaluation of experimentally observed detached regimes proves to be particularly difficult for several tokamaks. In particular the strong asymmetry of the ion flux density between the inner, {Lambda}{sub it}, and the outer target {Lambda}{sub ot} with increasing line averaged density, {bar n}{sub e}, and in particular ''vanishing'' of the ion flux, defined as full/complete detachment, at the inner target cannot be reproduced. It is unclear how this is related to divertor target plates or other plasma facing components containing carbon. As part of a combined effort at various experimental devices this paper contributes to the validation of the SOLPS code against experimental data from ASDEX Upgrade, AUG, at the onset of divertor detachment. In the framework established under the International Tokamak Physics Activity (ITPA) Divertor and SOL working group a series of ohmic discharges have been performed in AUG, which had as similar as possible plasma parameters as companion discharges undertaken in DIII-D [2]. The effect of activating drift terms, the influence of the chemical sputtering yield at the inner target and in addition to [3] the role of impurity influx from the inner heat shield are analyzed

    Opportunities for improving animal welfare in rodent models of epilepsy and seizures

    Get PDF
    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs)

    Scrape Off Layer (SOL) transport and filamentary characteristics in high density tokamak regimes

    Get PDF
    A detailed cross-device investigation on the role of filamentary dynamics in high density regimes has been performed within the EUROfusion framework comparing ASDEX Upgrade (AUG) and TCV tokamaks. Both devices have run density ramp experiments at different levels of plasma current, keeping toroidal field or q95 constant in order to disentangle the role of parallel connection length and the current. During the scan at constant toroidal field, in both devices SOL profiles tend to develop a clear Scrape Off Layer (SOL) density shoulder at lower edge density whenever current is reduced. The different current behavior is substantially reconciled in terms of edge density normalized to Greenwald fraction. During the scan at constant q95 AUG exhibits a similar behaviour whereas in TCV no signature of upstream profile modification has been observed at lower level of currents. The latter behaviour has been ascribed to the lack of target density roll-over. The relation between upstream density profile modification and detachment condition has been investigated. For both devices the relation between blob-size and SOL density e-folding length is found independent of the plasma current, with a clear increase of blob-size with edge density normalized to Greenwald fraction observed. ASDEX Upgrade has also explored the filamentary behaviour in H-Mode. The experiments on AUG focused on the role of neutrals, performing discharges with and without the cryogenic pumps, highlighting how large neutral pressure not only in the divertor but at the midplane is needed in order to develop a H-Mode SOL profile shoulder in AUG
    • 

    corecore