27 research outputs found

    Faint Lyman-Break galaxies as a crucial test for galaxy formation models

    Full text link
    It has recently been shown that galaxy formation models within the LambdaCDM cosmology predict that, compared to the observed population, small galaxies (with stellar masses < 10^{11} M_sun) form too early, are too passive since z ~ 3 and host too old stellar populations at z=0. We then expect an overproduction of small galaxies at z > 4 that should be visible as an excess of faint Lyman-break galaxies. To check whether this excess is present, we use the MORGANA galaxy formation model and GRASIL spectro-photometric + radiative transfer code to generate mock catalogues of deep fields observed with HST-ACS. We add observational noise and the effect of Lyman-alpha emission, and perform color-color selections to identify Lyman-break galaxies. The resulting mock candidates have plausible properties that closely resemble those of observed galaxies. We are able to reproduce the evolution of the bright tail of the luminosity function of Lyman-break galaxies (with a possible underestimate of the number of the brightest i-dropouts), but uncertainties and degeneracies in dust absorption parameters do not allow to give strong constraints to the model. Besides, our model shows a clear excess with respect to observations of faint Lyman-break galaxies, especially of z_{850} ~ 27 V-dropouts at z ~ 5. We quantify the properties of these "excess" galaxies and discuss the implications: these galaxies are hosted in dark matter halos with circular velocities in excess of 100 km s^{-1}, and their suppression may require a deep re-thinking of stellar feedback processes taking place in galaxy formation.Comment: 17 pages, 13 figures, 1 table; accepted for publication by MNRA

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Disrupting the media frame at Greenham Common: a new chapter in the history of mediations?

    Get PDF
    Drawing on Martin-Barbero's insistence on analysing the media's complex processes of social `mediation' and Scannell's insistence on grasping the phenomenal complexity of the media frame and how people interact with it, it is argued that an important, relatively neglected, dimension of the disruptive power of the Greenham Common Women's Peace Camp (1981-) has been its challenge to the terms of the media frame, the `struggle for visibility' it represents. This struggle for visibility is examined in two stages - in relation to the early years of intense media coverage and in relation to the later years of media silence. In the concluding section, connections are opened up between Greenham Common and recent, more obviously `mediated' forms of protest action

    Reducing the global burden of HTLV-1 infection: An agenda for research and action

    Get PDF
    Even though an estimated 10\u201320 million people worldwide are infected with the oncogenic retrovirus, human T-lymphotropic virus type 1 (HTLV-1), its epidemiology is poorly understood, and little effort has been made to reduce its prevalence. In response to this situation, the Global Virus Network launched a taskforce in 2014 to develop new methods of prevention and treatment of HTLV-1 infection and promote basic research. HTLV-1 is the etiological agent of two life-threatening diseases, adult T-cell leukemia and HTLV-associated myelopathy/tropical spastic paraparesis, for which no effective therapy is currently available. Although the modes of transmission of HTLV-1 resemble those of the more familiar HIV-1, routine diagnostic methods are generally unavailable to support the prevention of new infections. In the present article, the Taskforce proposes a series of actions to expand epidemiological studies; increase research on mechanisms of HTLV-1 persistence, replication and pathogenesis; discover effective treatments; and develop prophylactic and therapeutic vaccines
    corecore