14 research outputs found

    Circulating Fibroblast Growth Factor 23 in Patients with End-Stage Renal Disease Treated by Peritoneal Dialysis Is Intact and Biologically Active

    No full text
    Context: Fibroblast growth factor 23 (FGF23) regulates phosphorus homeostasis and vitamin D metabolism. Circulating FGF23 levels are elevated in inherited and acquired hypophosphatemic disorders that can cause rickets or osteomalacia. Particularly increased concentrations of FGF23 are observed in patients with chronic kidney disease (CKD), in which increased FGF23 is associated with more rapid disease progression, improved bone mineralization, the development of left ventricular hypertrophy, and increased mortality

    Defective O-Glycosylation due to a Novel Homozygous S129P Mutation Is Associated with Lack of Fibroblast Growth Factor 23 Secretion and Tumoral Calcinosis

    No full text
    Background: Homozygous mutations in fibroblast growth factor (FGF23) have recently been described as the genetic cause of one form of hyperphosphatemic tumoral calcinosis (HFTC). However, it remained unclear to date how these mutations lead to loss of biologically active FGF23 in the circulation

    Backbone Modification Provides a Long-Acting Inverse Agonist of Pathogenic, Constitutively Active PTH1R Variants

    No full text
    Parathyroid hormone 1 receptor (PTH1R) plays a key role in mediating calcium homeostasis and bone development, and aberrant PTH1R activity underlies several human diseases. Peptidic PTH1R antagonists and inverse agonists have therapeutic potential in treating these diseases, but their poor pharmacokinetics and pharmacodynamics undermine their in vivo efficacy. Herein, we report the use of a backbone-modification strategy to design a peptidic PTH1R inhibitor that displays prolonged activity as an antagonist of wild-type PTH1R and an inverse agonist of the constitutively active PTH1R–H223R mutant both in vitro and in vivo. This peptide may be of interest for the future development of therapeutic agents that ameliorate PTH1R malfunction

    Dominant-Negative GCMB Mutations Cause an Autosomal Dominant Form of Hypoparathyroidism

    No full text
    Context: Hypoparathyroidism (HP) is characterized by low PTH levels, hypocalcemia, and hyperphosphatemia. Heterozygous mutations in pre-pro-PTH or the calcium-sensing receptor (CaSR) cause some forms of autosomal dominant HP (AD-HP). Furthermore, homozygous mutations in glial cells missing B (GCMB) have been implicated in autosomal recessive HP (AR-HP). In most other HP patients, however, the molecular defect remains undefined
    corecore