866 research outputs found
Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordConjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.This work was funded by the Villum Kann Rasmussen Foundation Center of Excellence CREAM (Center for Environmental and Agricultural Microbiology)
Monotonic Distributive Semilattices
In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms
Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide. Although 58 genomic regions have been associated with CAD thus far, most of the heritability is unexplained, indicating that additional susceptibility loci await identification. An efficient discovery strategy may be larger-scale evaluation of promising associations suggested by genome-wide association studies (GWAS). Hence, we genotyped 56,309 participants using a targeted gene array derived from earlier GWAS results and performed meta-analysis of results with 194,427 participants previously genotyped, totaling 88,192 CAD cases and 162,544 controls. We identified 25 new SNP-CAD associations (P < 5 × 10(-8), in fixed-effects meta-analysis) from 15 genomic regions, including SNPs in or near genes involved in cellular adhesion, leukocyte migration and atherosclerosis (PECAM1, rs1867624), coagulation and inflammation (PROCR, rs867186 (p.Ser219Gly)) and vascular smooth muscle cell differentiation (LMOD1, rs2820315). Correlation of these regions with cell-type-specific gene expression and plasma protein levels sheds light on potential disease mechanisms
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula × tremuloides
Context: Anthropogenic activity has increased the level of atmospheric CO2, which is driving an increase of global temperatures and associated changes in precipitation patterns. At Northern latitudes, one of the likely consequences of global warming is increased precipitation and air humidity.
Aims: In this work, the effects of both elevated atmospheric CO2 and increased air humidity on trees commonly growing in northern European forests were assessed. Methods: The work was carried out under field conditions by using Free Air Carbon dioxide Enrichment (FACE) and Free Air Humidity Manipulation (FAHM) systems. Leaf litter fall was measured over 4 years (FACE) or 5 years (FAHM) to determine the effects of FACE and FAHM on leaf phenology. Results: Increasing air humidity delayed leaf litter fall in Betula pendula, but not in Populus tremula × tremuloides. Similarly, under elevated atmospheric CO2, leaf litter fall was delayed in Betula pendula, but not in Alnus glutinosa. Increased CO2 appeared to interact with periods of low precipitation in summer and high ozone levels during these periods to effect leaf fall.
Conclusions: This work shows that increased CO2 and humidity delay leaf fall, but this effect is species specific
Future therapeutic targets in rheumatoid arthritis?
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches
Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldWe recently described an association between risk of type 2diabetes and variants in the transcription factor 7-like 2 gene (TCF7L2; formerly TCF4), with a population attributable risk (PAR) of 17%-28% in three populations of European ancestry. Here, we refine the definition of the TCF7L2 type 2diabetes risk variant, HapB(T2D), to the ancestral T allele of a SNP, rs7903146, through replication in West African and Danish type 2 diabetes case-control studies and an expanded Icelandic study. We also identify another variant of the same gene, HapA, that shows evidence of positive selection in East Asian, European and West African populations. Notably, HapA shows a suggestive association with body mass index and altered concentrations of the hunger-satiety hormones ghrelin and leptin in males, indicating that the selective advantage of HapA may have been mediated through effects on energy metabolism
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Кинетика восстановления железа при восстановительной плавке рудоугольных окатышей
Исследовано влияние интенсивности теплообмена на кинетику восстановления железа в процессе плавки рудоугольных окатышей. Показано, что с ростом интенсивности теплообмена повышается скорость восстановительных процессов. Вследствие роста коэффициента теплообмена увеличивается глубина восстановленного слоя окатыша, существенно изменяются его структура и химический состав образующейся металлической фазы.Досліджено вплив інтенсивності теплообміну на кінетику відновлення заліза в процесі плавки рудовугільних окатишів. Показано, що при зростанні інтенсивності теплообміну підвищується швидкість відновлювальних процесів. Внаслідок зростання коефіцієнту теплообміну збільшується глибина відновленого шару окатиша, суттєво змінюються його структура та хімічний склад металевої фази, що утворюється.Influence of intensity of heat exchange is investigational on kinetics reduction of iron in the process of melting ore-coal pellets. It is rotined that speed of reduction processes rises with growth of intensity of heat exchange. Because of growth of coefficient of heat exchange the depth of the recovered layer of pellet is increased, his structure and chemical composition of appearing metallic phase changes substantially
- …
