
MONOTONIC DISTRIBUTIVE SEMILATTICES

SERGIO A. CELANI AND MA. PAULA MENCHÓN
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Abstract. In the study of algebras related to non-classical logics, (distributive) semi-

lattices are always present in the background. For example, the algebraic semantic

of the {→,∧,>}-fragment of intuitionistic logic is the variety of implicative meet-

semilattices [2] [6]. In this paper we introduce and study the class of distributive

meet-semilattices endowed with a monotonic modal operator m. We study the repre-

sentation theory of these algebras using the theory of canonical extensions and we give

a topological duality for them. Also, we show how our new duality extends to some

particular subclasses.

Distributive meet semilattices, monotonic modal logics, DS-spaces, modal operators.

1. Introduction

Boolean algebras with modal operators are the algebraic semantic of classical modal

logics. Using Stone’s topological representation of Boolean algebras, it is known that

every Boolean algebra with a modal operator can be represented as a relational structure

[5]. This representation plays an important role in the study of many extensions of

normal modal logics [5] and monotone modal logics [7] [13]. Recall that monotone

modal logics are a generalization of normal modal logics in which the axiom m(ϕ →
φ) → (mϕ → mφ) has been weakened, leading to a monotonicity condition which can

be either expressed as an axiom (m(ϕ ∧ φ) → mϕ), or as a rule (from ϕ → φ derive

mϕ → mφ). Thus, it is possible to study monotone modal logics with a language

containing only the connectives ∧ and m, or → and m.

Classical monotone modal logics are interpreted semantically by means of neighbor-

hood frames [7] [13] [14]. This class of structures provides a generalization of Kripke

semantics. Every neighborhood frame produces a Boolean algebra endowed with a mono-

tonic operator, called monotonic algebra. And reciprocally, every monotonic algebra

defines a neighborhood frame (see [13] or [3]). Also, it is possible to consider monotone

modal logics defined on non-classical logics. For example, in [16], Kojima considered
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neighborhood semantics for intuitionistic modal logic, and he defined a neighborhood

frame as a triple 〈W,≤, N〉 where N is a neighborhood function, which is a mapping

from W to P(P(W )) that satisfies the decreasing condition, i.e., N(x) ⊇ N(y) whenever

x ≤ y (see Definition 3.1 of [16]). Monotonic logics based on intuitionistic logic are also

studied in [18].

In the study of algebras related to non-classical logics, semilattices are always present

in the background. For example, the algebraic semantic of the {→,∧,>}-fragment of

intuitionistic logic is the variety of implicative meet-semilattices [2] [6], and it is well

known that the meet-semilattice reduct of an implicative meet-semilattice is distribu-

tive in the sense of [12] or [4]. In [12] G. Grätzer gave a topological representation

for distributive semilattices using sober spaces. This representation was extended to a

topological duality in [4] and [1]. The principal novelty of [4] was the characterization of

meet-semilattice homomorphisms preserving top by means of certain binary relations.

For implicative semilattices there exists a similar representation in [2]. The main objec-

tive of this paper is to study a full Stone style duality for distributive meet-semilattices

endowed with a monotonic operator. So, most of the results given in this paper are

applicable, with minor modifications, to the study of bounded distributive lattices, im-

plicative semilattices, Heyting algebras, and Boolean algebras with monotonic operators.

We note that in the particular case of Boolean algebras our duality yields the duality

given in [3] and [13].

Canonical extensions were introduced by Jónsson and Tarski to study Boolean alge-

bras with operators. The main purpose was to make it easier to identify what form

the dual of an additional operation on a lattice should take. Since their seminal work,

the theory of canonical extensions has been simplified and generalized [11, 8], leading to

a theory widely applicable beyond the original Boolean setting. We will use canonical

extension as a tool for the development of a theory of relational methods, in an algebraic

way.

The paper is organized as follows. In Section 2 we recall the definitions and some basic

properties of distributive semilattices and canonical extensions. We recall the topological

representation and duality developed in [4] and [1]. In Section 3, we introduce a special

class of saturated sets of a DS-space that is dual to the family of order ideals of a

distributive semilattice. In Section 4 we present the class of distributive semilattices

endowed with a monotonic operator, and we extend the results on representation using

canonical extensions. In section 5 we consider some important applications of the duality.

We show how our new duality extends to some particular subclasses.

2. Preliminaries

We include some elementary properties of distributive semilattices that are necessary

to read this paper. For more details see [4], [6] and [1].

Let 〈X,≤〉 be a poset. For each Y ⊆ X, let [Y ) = {x ∈ X : ∃y ∈ Y (y ≤ x)} and

(Y ] = {x ∈ X : ∃y ∈ Y (x ≤ y)}. If Y = {y}, then we will write [y) and (y] instead

of [{y}) and ({y}], respectively. We call Y an upset (resp. downset) if Y = [Y ) (resp.
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Y = (Y ]). The set of all upsets of X will be denoted by Up(X). The complement of a

subset Y ⊆ X will be denoted by Y c or X − Y .

Definition 1. A meet-semilattice with greatest element, a semilattice for short, is an al-

gebra A = 〈A,∧, 1〉 of type (2, 0) such that the operation ∧ is idempotent, commutative,

associative, and a ∧ 1 = a for all a ∈ A.

It is clear that for each poset 〈X,≤〉 the structure 〈Up(X),∩, X〉 is a semilattice.

Let A be a semilattice. As usual, we can define a partial order on A, called the

natural order, as a ≤ b iff a ∧ b = a. It is easy to see that 1 is the greatest element

of A. A subset F ⊆ A is a filter of A if it is an upset, 1 ∈ F and if a, b ∈ F , then

a∧ b ∈ F . We will denote the set of all filters of A by Fi(A). It is easy to see that Fi(A)

is closed under arbitrary intersections. The filter generated by the subset X ⊆ A will be

denoted by F (X). If X = {a}, F ({a}) = F (a) = [a). We shall say that a proper filter

is irreducible or prime if for any pair of filters F1, F2 such that F = F1 ∩ F2, it follows

that F = F1 or F = F2.

We will denote the set of all irreducible filters of a semilattice A by X(A). A subset

I ⊆ A is called an order ideal if it is a downset and for every a, b ∈ I we have that there

exists c ∈ I such that a, b ≤ c. We will denote the set of all order ideals of A by Id(A).

Theorem 2. [4] Let A be a semilattice. Let F ∈ Fi(A) and let I ∈ Id(A) such that

F ∩ I = ∅. Then there exists P ∈ X(A) such that F ⊆ P and P ∩ I = ∅.

A semilattice A is distributive if for all a, b, c ∈ A such that a ∧ b ≤ c there exist

a1, b1 ∈ A such that a ≤ a1, b ≤ b1 and c = a1 ∧ b1. We will denote by DS the class of

distributive semilattices. We recall (see [1, 4]) that in a distributive semilattice A, if F

is a proper filter then the following conditions are equivalent:

(1) F is irreducible,

(2) for every a, b ∈ A such that a, b /∈ F , there exist c /∈ F and f ∈ F such that

a ∧ f ≤ c and b ∧ f ≤ c,
(3) A− F = F c is an order ideal.

Let A,B ∈ DS. A mapping h : A→ B is called a semilattice homomorphism if

(1) h(a) ∧ h(b) = h(a ∧ b) for every a, b ∈ A and

(2) h(1) = 1.

Let A ∈ DS. Let us consider the poset 〈X(A),⊆〉 and the mapping βA : A →
Up(X(A)) defined by βA(a) = {P ∈ X(A) : a ∈ P}. For convenience, we omit the

subscript of βA, when no confusion can arise.

Theorem 3. Let A ∈ DS. Then A is isomorphic to the subalgebra β[A] = {β(a) : a ∈
A} of 〈Up(X(A)),∩, X(A)〉.

2.1. DS-spaces. In this subsection we recall the duality for distributive semilattices

given in [1] and [4] based on a Stone style duality and we give some definitions that we

will need to extend it.
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Let 〈X, T 〉 be a topological space. We will denote by KO(X) the set of all compact

and open subsets of X and let D(X) be the set D(X) = {U : U c ∈ KO(X)}. We will

denote by C(X) the set of all non-empty closed subsets of X. The closure of a subset

Y ⊆ X will be denoted by cl(Y ). A subset Y ⊆ X is saturated if it is an intersection

of open sets. The smallest saturated set containing Y is the saturation of Y and will be

denoted by sat(Y ).

We recall that the specialization order of 〈X, T 〉 is defined by x � y if x ∈ cl({y}) =

cl(y). It is easy to see that � is a reflexive and transitive relation. If X is T0 then the

relation � is a partial order. The dual order of � will be denoted by ≤, i.e., x ≤ y if

y ∈ cl(x). Moreover, if X is T0 then cl(x) = [x), sat(Y ) = (Y ], and every open (resp.

closed) subset is a downset (resp. upset) respect to ≤.

Recall that a non-empty subset Y ⊆ X of a topological space 〈X, T 〉 is irreducible if

Y ⊆ Z ∪W for any closed subsets Z and W , implies Y ⊆ Z or Y ⊆ W . A topological

space 〈X, T 〉 is sober if for every irreducible closed set Y ⊆ X, there exists a unique

x ∈ X such that cl(x) = Y . Each sober space is T0. The following definition is equivalent

to the definition given by G. Grätzer in [12].

Definition 4. [1] A DS-space is a topological space 〈X, T 〉 such that:

(1) The set of all compact and open subsets KO(X) forms a basis for the topology

T on X.

(2) 〈X, T 〉 is sober.

If 〈X, T 〉 is a DS-space, then 〈D(X),∩, X〉 is a distributive semilattice (see [12]).

Let 〈X,≤〉 be a poset. Recall that a subset K ⊆ X is called dually directed if for

any x, y ∈ K there exists z ∈ K such that z ≤ x and z ≤ y. A subset K ⊆ X is called

directed if for any x, y ∈ K there exists z ∈ K such that x ≤ z and y ≤ z.

Theorem 5. Let 〈X, T 〉 be a topological space with basis K of open and compact subsets

for T . Then, the following conditions are equivalent:

(1) 〈X, T 〉 is sober

(2) 〈X, T 〉 is T0 and
⋂
{U : U ∈ L} ∩ Y 6= ∅ for each closed subset Y and for any

dually directed subset L ⊆ K such that Y ∩ U 6= ∅ for all U ∈ L.

Let A ∈ DS. Consider KA = {β(a)c : a ∈ A} and let TA be the topology generated by

the basis KA. Then, 〈X(A), TA〉 is a DS-space, called the dual space of A (see [4] and

[1]). Recall that Q ∈ cl(P ) iff P ⊆ Q, i.e., the specialization dual order of 〈X(A), TA〉
is the inclusion relation ⊆. Also, recall that the lattices Fi(A) and C(X(A)) are dually

isomorphic under the maps F 7→ F̂ , where F̂ = {P ∈ X(A) : F ⊆ P} =
⋂
{β(a) :

a ∈ F} for each F ∈ Fi(A) and Y 7→ FY , where FY = {a ∈ A : Y ⊆ β(a)} for each

Y ∈ C(X(A)).

2.2. Canonical extension. Here we will give the basic definitions of the theory of

canonical extensions focused on (distributive) meet semilattices. The following is an

adaptation of the definition given in [8] for posets. This definition agrees with the
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definition of canonical extensions for bounded distributive lattices and Boolean algebras

[11, 15].

Definition 6. Let A be a a semilattice. A completion of A is a semilattice embedding

e : A→ X where X is a complete lattice. From now on, we will suppress e and call X a

completion of A and assume that A is a subalgebra of X.

Definition 7. Let A be a semilattice. Given a completion X of A, an element of X is

called closed provided it is the infimum in X of some filter F of A. We denote the set of

all closed elements of X by K(X). Dually, an element of X is called open provided it is

the supremum in X of some order ideal I of A. We denote the set of all open elements

of X by O(X). A completion X of A is said to be dense provided each element of X is

both the supremum of all the closed elements below it and the infimum of all the open

elements above it. A completion X of A is said to be compact provided that whenever

D is a non-empty dually directed subset of A, U is a non-empty directed subset of A,

and
∧
LD ≤

∨
L U , then there exist x ∈ D and y ∈ U such that x ≤ y.

Definition 8. Let A be a semilattice. A canonical extension of A is a dense and compact

completion of A.

Theorem 9. Let A be a semilattice, then A has a canonical extension and it is unique

up to an isomorphism that fixes A.

Lemma 10. Let us consider a distributive semilattice with greatest element A = 〈A,∧, 1〉.
〈Up(X(A)),∩,∪, X(A), ∅〉 is a canonical extension of A, where A ∼= β[A] ⊆ Up(X(A)).

We will call it ‘the’ canonical extension.

3. Ideals and saturated subsets

In this section we present a particular family of saturated sets in a DS-space, dual to

the family of order ideals of a semilattice.

Definition 11. Let 〈X, T 〉 be a DS-space. Z ⊆ X is a special basic saturated subset if

Z =
⋂
{W : W ∈ L} for some dually directed family L ⊆ KO(X).

We denote by S(X) the set of all special basic saturated subsets of a DS-space 〈X, T 〉.
Note that every special basic saturated subset is a saturated set.

Let A ∈ DS. Let I ∈ Id(A). We consider the following subset of X(A) :

α(I) =
⋂
{β(a)c : a ∈ I} = {P ∈ X(A) : I ∩ P = ∅}.

It is clear that α(I) is a special basic saturated set of 〈X(A), TA〉. Let Z ⊆ X(A) be a

special basic saturated set of X(A). Consider the subset

IA(Z) = {a ∈ A : β(a) ∩ Z = ∅}.

It is easy to see that IA(Z) is a downset of A.

Remark 12. The special basic saturated subsets of a DS-space 〈X, T 〉 are precisely the

compact saturated subsets of the topology.
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Given two posets 〈X,≤X〉 and 〈Y,≤Y 〉, a surjective order-isomorphism from 〈X,≤X〉
to 〈Y,≤Y 〉 is a surjective function f : X → Y with the property that for every x and y

in X, x ≤X y if and only if f(x) ≤Y f(y). We say that the posets 〈X,≤X〉 and 〈Y,≤Y 〉
are isomorphic if there exists a surjective order-isomorphism f : X → Y .

In the following result we prove that order ideals are in bijective correspondece with

the family of basic saturated subsets of X(A).

Theorem 13. Let A ∈ DS. Then the posets 〈Id(A),⊆〉 and 〈S(X(A)),⊆〉 are dually

isomorphic.

Proof. Let Z ⊆ X(A) be a special basic saturated subset of X(A). We prove that IA(Z)

is an order ideal of A and Z = α(IA(Z)). Moreover, if I is any order ideal of A, then

we prove that I = IA(α(I)).

It is clear that IA(Z) is a downset of A. Let a, b ∈ IA(Z). So, we have that Z∩(βA(a)∪
βA(b)) = ∅. Since Z =

⋂
{β(a)c : β(a)c ∈ L} for some dually directed family L ⊆ KA and

β(a)∪β(b) is a closed subset, there exists βA(c)c ∈ L such that β(c)c∩ (β(a)∪β(b)) = ∅.
Thus, β(a) ∪ β(b) ⊆ β(c) and Z ∩ βA(c) = ∅, i.e., a, b ≤ c and c ∈ IA(Z). Therefore,

IA(Z) is an order ideal of A and we have that α(IA(Z)) =
⋂
{β(a)c : Z ⊆ β(a)c} ⊆⋂

{β(a)c : β(a)c ∈ L} = Z. The other inclusion is immediate.

Now, let I be an order ideal. Let b ∈ IA(α(I)). Then β(b) ∩ α(I) = β(b) ∩
⋂
{β(a)c :

a ∈ I} = ∅. Since βA(b) is a closed subset, and the family {β(a)c : a ∈ I} is dually

directed, we get that there exists a ∈ I such that β(b) ⊆ β(a). So, b ≤ a, and as I is a

downset, we have that b ∈ I. The other inclusion is immediate.

Thus, we have a surjective function α : Id(A) → S(X(A)) with inverse function

IA : S(X(A)) → Id(A). We prove that α is a dual order-isomorphism. Let I1 and

I2 be two ideals of A. Assume that I1 ⊆ I2. Let P ∈ α(I2). Then, P ∩ I2 = ∅. It follows

that P ∩ I1 = ∅, i.e., P ∈ α(I1).

Assume that α(I1) ⊆ α(I2). Let a ∈ I2 and suppose that a /∈ I1. Then I1 ∩ [a) = ∅,
so there exists P ∈ X(A) such that [a) ⊆ P and P ∩ I1 = ∅. It follows that P ∈ α(I1)

but P /∈ α(I2) which is a contradiction. Therefore, a ∈ I1. �

Remark 14. We note that for any a ∈ A, α((a]) = β(a)c.

For simplicity we will write α(a) instead of α((a]).

Proposition 15. Let A ∈ DS, let Y ∈ C(X(A)) and Z ∈ S(X(A)). Then,

FY ∩ IA(Z) = ∅ iff Y ∩ Z 6= ∅.

Proof. Suppose that FY ∩ IA(Z) = ∅. Then, there exists P ∈ X(A) such that FY ⊆ P

and P ∩ IA(Z) = ∅, i.e., P ∈ Y and P ∈ Z. Thus, Y ∩ Z 6= ∅. The rest of proof is

straightforward. �

Now, we are able to identify the topological structures that are the closed and open

elements of a canonical extension of a distributive semilattice.

Lemma 16. Let A be a distributive semilattice. Let us consider the canonical exten-

sion 〈Up(X(A)),∩,∪, X(A), ∅〉 and the DS-space 〈X(A), TA〉. Then, K(Up(X(A))) =



MONOTONIC DISTRIBUTIVE SEMILATTICES 7

C(X(A)) and O(Up(X(A))) = {Zc : Z ∈ S(X(A))}, i.e., the closed elements of the

canonical extension are exactly the closed sets of the topology and the open elements of

the canonical extension are the complements of the special saturated sets of the topology.

Remark 17. Given a complete lattice C, we denote the set of completely join prime

elements by J∞(C) and the set of completely meet prime elements by M∞(C).

Every element of Up(X(A)) is a join of completely join prime elements and a meet of

completely meet prime elements, where J∞(Up(X(A))) = {P̂ = [P ) : P ∈ X(A)} and

M∞(Up(X(A))) = {α(P c)c = (P ]c : P ∈ X(A)}.

4. Representation and duality of monotonic distributive semilattices

Definition 18. Let A = 〈A,∧, 1〉 be a distributive semilattice. A monotonic operator

is an operator m : A→ A that satisfies the following condition

If a ≤ b, then ma ≤ mb for all a, b ∈ A.

The following result is immediate.

Proposition 19. Let A ∈ DS and let m : A → A be a unary function. Then the

following conditions are equivalent:

(1) For all a, b ∈ A, if a ≤ b then ma ≤ mb,
(2) m(a ∧ b) ≤ ma ∧mb for all a, b ∈ A.

Definition 20. Let A ∈ DS. The pair 〈A,m〉 such that m is a monotonic operator

defined on A is called a monotonic distributive semilattice.

The class of all monotonic distributive semilattices will be denoted by MDS.

Let 〈A,m〉, 〈B,m〉 ∈ MDS. We say that a homomorphism h : A → B is a homo-

morphism of monotonic distributive semilattices if h commutes with m, i.e., if h(ma) =

mh(a) for all a ∈ A. We denote by MDSH the category of monotonic distributive

semilattices and monotonic distributive semilattice homomorphisms.

We will give two examples of monotonic distributive semilattices constructed from

certain relational systems. We shall use these examples in the theory of representation

and topological duality for monotonic distributive semilattices.

Let X be a set. A multirelation on X is a subset of the Cartesian product X×P(X),

that is, a set of ordered pairs (x, Y ) where x ∈ X and Y ⊆ X [9] [17]. We recall that in

classical monotone modal logic a neighborhood frame is a pair 〈X,R〉 where X is a set

and R ⊆ X×P(X), i.e., R is a multirelation (see [7] [13]). Now we give a generalization

of this notion.

Definition 21. An S-neighborhood frame is a triple 〈X,≤, R〉 where 〈X,≤〉 is a poset

and R is a subset of X × P(X) such that if x ≤ y, then R(y) ⊆ R(x) for all x, y ∈ X.

For each U ∈ Up(X) we define the set

(4.1) mR(U) = {x ∈ X : ∀Z ∈ R(x) (Z ∩ U 6= ∅)}.
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A C-neighborhood frame is a triple 〈X,≤, G〉 where 〈X,≤〉 is a poset and G is a subset

of X×P(X) such that if x ≤ y, then G(x) ⊆ G(y) for all x, y ∈ X. For each U ∈ Up(X)

we define the set

(4.2) mG(U) = {x ∈ X : ∃Y ∈ G(x) (Y ⊆ U)}.

Lemma 22. Let 〈X,≤, R〉 be an S-neighborhood frame and 〈X,≤, G〉 be a C-neighborhood

frame. Then 〈Up(X),∩,mR, X〉 and 〈Up(X),∩,mG, X〉 are monotonic distributive semi-

lattices.

We will represent the monotonic operator m on a distributive semilattice A as a mul-

tirelation on the dual space of A, where the canonical extension offers an advantageous

point of view. We consider two different ways of extending maps that agree with the

ones given in [8] for posets, bounded distributive lattices and Boolean algebras.

Definition 23. Let A be a distributive semilattice. Given a monotonic operation

m : A→ A, we define the maps

mσ,mπ : Up(X(A))→ Up(X(A))

by

mσ(X) =
⋃
{
⋂
{β(ma) : Y ⊆ β(a)} : X ⊇ Y ∈ C(X(A))}

and

mπ(X) =
⋂
{
⋃
{β(ma) : Z ⊆ β(a)c} : Xc ⊇ Z ∈ S(X(A))}.

The two extensions of a map m shown above are not always equal. Whether we want

to extend a particular additional operation using the σ- or the π-extension depends on

the properties of the particular operation to be extended. The following lemma is a

consequence of Lemma 3.4 of [8].

Lemma 24. Let 〈A,m〉 ∈ MDS. The maps mσ,mπ are monotonic extensions of m,

i.e., 〈Up(X(A)),mσ〉, 〈Up(X(A)),mπ〉 ∈ MDS and mσ(β(a)) = mπ(β(a)) = β(ma) for

all a ∈ A. In addition, mσ ≤ mπ with equality holding on K(Up(X(A)))∪O(Up(X(A))).

For X ∈ Up(X(A)), Y ∈ C(X(A)) and Z ∈ S(X(A))

mσ(X) =
⋃
{mσ(Y ) : X ⊇ Y ∈ C(X(A))},

mσ(Y ) =
⋂
{β(ma) : Y ⊆ β(a)},

mπ(X) =
⋂
{mπ(Zc) : Xc ⊇ Z ∈ S(X(A))},

mπ(Zc) =
⋃
{β(ma) : Z ⊆ β(a)c}.

So, mσ and mπ send closed sets to closed sets and complements of special saturated sets

to complements of special saturated sets.

Now we show how, using the σ-extension and the π-extension, it is possible to define

two multirelations on the dual space of A.

Let 〈A,m〉 ∈ MDS. Note that by definition of mπ, for every Z ∈ S(X(A)) we have:

P ∈ mπ(Zc) ⇔ ∃a ∈ A such that P ∈ β(ma) and Z ⊆ β(a)c

⇔ ∃a ∈ A such that ma ∈ P and a ∈ IA(Z)

⇔ m−1(P ) ∩ IA(Z) 6= ∅.
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So, for every X ∈ Up(X(A)) we get:

P ∈ mπ(X) ⇔ ∀Z ∈ S(X(A)) such that Z ⊆ Xc, we have P ∈ mπ(Zc)

⇔ ∀Z ∈ S(X(A)) such that Z ⊆ Xc, we have m−1(P ) ∩ IA(Z) 6= ∅.
We define the relation

Rm ⊆ X(A)× S(X(A))

by

(4.3) (P,Z) ∈ Rm iff m−1(P ) ∩ IA(Z) = ∅.

Consequently, the operation mπ on Up(X(A)) can be defined in terms of the relation

Rm as:

P ∈ mπ(X) iff ∀Z ∈ Rm(P )[Z ∩X 6= ∅].
On the other hand, we can define another multirelation using the operation mσ. Note

that for each Y ∈ C(X(A)) we have:

P ∈ mσ(Y ) ⇔ ∀a ∈ A such that Y ⊆ β(a) we get P ∈ β(ma)

⇔ ∀a ∈ A such that a ∈ FY we get ma ∈ P
⇔ FY ⊆ m−1(P ).

So, for each X ∈ Up(X(A)) we obtain:

P ∈ mσ(X) ⇔ ∃Y ∈ C(X(A)) such that Y ⊆ X and P ∈ mσ(Y )

⇔ ∃Y ∈ C(X(A)) such that Y ⊆ X and P ∈ mσ(Y )

⇔ ∃Y ∈ C(X(A)) such that Y ⊆ X and FY ⊆ m−1(P ).

Thus, we can define another relation Gm ⊆ X(A)× C(X(A)) as

(P, Y ) ∈ Gm iff FY ⊆ m−1(P ).

Consequently, the operation mσ on Up(X(A)) can be defined in terms of the relation

Gm as:

(4.4) P ∈ mσ(X) iff ∃Y ∈ Gm(P )[Y ⊆ X].

Remark 25. Let 〈A,m〉 ∈ MDS. Note that 〈X(A),⊆, Rm〉 and 〈X(A),⊆, Gm〉 are an

S-monotonic and a C-monotonic frame, respectively, where mRm = mπ and mGm = mσ.

Now, we are able to define the dual spaces of monotonic distributive semilattices.

Depending on the way we define the relation on the dual space, there are two possible

constructions of relational systems. However, we will show that both systems are in-

terdefinible. For each monotonic operator, we can choose to work with either of them

based on its behavior. In the next section we will see how some additional conditions

affect the relations associated.

Let 〈X,K〉 be a DS-space. For each U ∈ D(X) we define the subsets LU and DU of

P(S(X)) and P(C(X)) as follows:

LU = {Z ∈ S(X) : Z ∩ U 6= ∅}
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and

DU = {Y ∈ C(X) : Y ⊆ U}.

Definition 26. An S-monotonic DS-space is a structure 〈X, T , R〉, where 〈X, T 〉 is a

DS-space, and R ⊆ X × S(X) is a multirelation such that

(1) mR(U) = {x ∈ X : ∀Z ∈ R(x)[Z ∩ U 6= ∅]} ∈ D(X), for all U ∈ D(X) and

(2) R(x) =
⋂
{LU : U ∈ D(X) and x ∈ mR(U)}, for all x ∈ X.

We can also give an analogous definition of C-monotonic DS-space as a structure 〈X, T , G〉,
where 〈X, T 〉 is a DS-space and G ⊆ X × C(X) is a multirelation such that

(3) mG (U) = {x ∈ X : ∃Y ∈ G (x) [Y ⊆ U ]} ∈ D(X) for all U ∈ D(X), and

(4) G (x) =
⋂
{(DU )c : U ∈ D(X) and x ∈mG (U)c} for all x ∈ X.

Lemma 27. Let 〈X, T , R〉 and 〈X, T , G〉 be an S-monotonic DS-space and a C-monotonic

DS-space respectively. Then,

(1) R(y) ⊆ R(x) for all x, y ∈ X such that x ≤ y and

(2) G(x) ⊆ G(y) for all x, y ∈ X such that x ≤ y.

Proof. 1. Suppose that x ≤ y and let Z ∈ R(y). Let U ∈ D(X) such that x ∈ mR(U).

By (1) of Definition 26, mR(U) is an upset, then y ∈ mR(U). By (2) of Definition 26 we

have that Z ∩ U 6= ∅. Then, Z ∈
⋂
{LU : U ∈ D(X) and x ∈ mR(U)} = R(x).

2. Suppose that x ≤ y. Let Y ∈ G(x). Let U ∈ D(X) such that y ∈mG(U)c. By (3)

of Definition 26, mG(U)c is a downset, then x ∈ mG(U)c. By (4) of Definition 26 we

have that Y ∩ U c 6= ∅. Then, Y ∈
⋂
{(DU )c : U ∈ D(X) and y ∈mG(U)c} = G(x). �

As a corollary we have that 〈X,≤, R〉 is an S-neighborhood frame and 〈X,≤, G〉 is

a C-neighborhood frame. From Definition 21, we get that the algebras 〈Up(X),mR〉
and 〈Up(X),mG〉, considering the operators defined by 4.1 and 4.2, are monotonic dis-

tributive semilattices. In consequence, by (1) and (3) of Definition 26, 〈D(X),mR〉 and

〈D(X),mG〉 are monotonic distributive semilattices considering the operators restricted

to D(X).

Now, we will see how we get a kind of space from the other.

Definition 28. Let 〈X, T 〉 be a DS-space. Let φX : P(S(X)) → P(C(X)) be the

function defined by

φX(S) = {Y ∈ C(X) : ∀Z ∈ S [Y ∩ Z 6= ∅]}

and let ψX : P(C(X))→ P(S(X)) be the function defined by

ψX(C) = {Z ∈ S(X) : ∀Y ∈ C [Y ∩ Z 6= ∅]}.

It is easy to see that

C ⊆ φX(S) iff S ⊆ ψX(C),

for all S ⊆ S(X) and C ⊆ C(X). It follows that the pair (φX , ψX) is a Galois connection.
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Proposition 29. (1) Given an S-monotonic DS-space 〈X, T , R〉, the relation GR ⊆
X × C(X) defined as

(x, Y ) ∈ GR iff Y ∈ φX(R(x))

is such that 〈X, T , GR〉 is a C-monotonic DS-space and mR(U) = mGR
(U) for

all U ∈ D(X).

(2) Given a C-monotonic DS-space 〈X, T , G〉, the relation RG ⊆ X × S(X) defined

as

(x, Z) ∈ RG iff Z ∈ ψX(G(x))

is such that 〈X, T , RG〉 is a S-monotonic DS-space and mG(U) = mRG
(U) for

all U ∈ D(X).

Proof. 1. Let 〈X, T , R〉 be an S-monotonic DS-space. We will see that mR(U) =

mGR
(U) for all U ∈ D(X). Let U ∈ D(X) and x ∈ mR(U). Then, for all Z ∈ R(x)

we have that Z ∩ U 6= ∅ and since U ∈ C(X), U ∈ GR(x). From U ⊆ U , we get that

x ∈ mGR
(U). Now, suppose that x ∈ mGR

(U). So, there exists Y ∈ GR(x) such that

Y ⊆ U and since for all Z ∈ R(x) we have that Y ∩ Z 6= ∅, then Z ∩ U 6= ∅ for all

Z ∈ R(x) and thus x ∈ mR(U).

We have proved that mR(U) = mGR
(U) and since 〈X,T,R〉 is an S-monotonic DS-

space, mGR
(U) ∈ D(X).

Now, we will see that GR (x) =
⋂
{(DU )c : U ∈ D(X) and x ∈ mGR

(U)c} for all

x ∈ X. Let x ∈ X. It is easy to prove the inclusion GR (x) ⊆
⋂
{(DU )c : U ∈

D(X) and x ∈ mGR
(U)c}. To prove the other inclusion, let Y ∈

⋂
{(DU )c : U ∈

D(X) and x ∈mGR
(U)c} and suppose that Y /∈ GR(x). So, there exists Z ∈ R(x) such

that Z ∩ Y = ∅. Since Z ∈ S(X) and Y ∈ C(X), there exists U ∈ D(X) such that

Z ⊆ U c and Y ∩ U c = ∅. Then Z ∩ U = ∅, x /∈ mR(U) = mGR
(U) and Y ⊆ U , i.e.,

Y ∈ DU , which is a contradiction.

2. Let 〈X, T , G〉 be a C-monotonic DS-space. We will see that mG(U) = mRG
(U) for

all U ∈ D(X). Let U ∈ D(X) and x ∈ mRG
(U). Suppose that x /∈ mG(U). Then, for

all Y ∈ G(x), Y ∩U c 6= ∅. So, U c ∈ RG(x) which contradicts the fact that x ∈ mRG
(U).

Now, suppose that x ∈ mG(U). Then there exists Y ∈ G(x) such that Y ⊆ U . Let

Z ∈ RG(x). So, we have that Y ∩ Z 6= ∅, then Z ∩ U 6= ∅. Thus x ∈ mRG
(U).

We have proved that mG(U) = mRG
(U) and since 〈X, T , G〉 is a C-monotonic DS-

space, mRG
(U) ∈ D(X).

Now, we will see that RG (x) =
⋂
{LU : U ∈ D(X) such that x ∈ mRG

(U)} for all

x ∈ X. Let x ∈ X. The proof of the inclusion RG ⊆
⋂
{LU : U ∈ D(X) such that x ∈

mRG
(U)} is easy. Let Z ∈

⋂
{LU : U ∈ D(X) such that x ∈ mRG

(U)} and suppose

that Z /∈ RG(x). So, there exists Y ∈ G(x) such that Z ∩ Y = ∅. Since Z ∈ S(X) and

Y ∈ C(X), there exists U ∈ D(X) such that Z ⊆ U c and Y ∩ U c = ∅. Then, Y ⊆ U ,

x ∈mG(U) = mRG
(U) and Z ∩ U = ∅, i.e., Z /∈ LU , which is a contradiction. �

Proposition 30. Let 〈A,m〉 ∈ MDS. Then 〈X(A), TA, Rm〉 is an S-monotonic DS-

space and 〈X(A), TA, Gm〉 is a C-monotonic DS-space.
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Proof. Let U ∈ D(X(A)). By definition, U = β(a) for some a ∈ A. By Lemma 24

we have that mRm(β(a)) = mGm(β(a)) = β(ma) ∈ D(X(A)), i.e., mRm(U),mGm(U) ∈
D(X(A)) for all U ∈ D(X(A)).

Now we will show that for all P ∈ X(A)

Rm(P ) =
⋂
{Lβ(a) : ma ∈ P}.

Let P ∈ X(A). It is clear that Rm(P ) ⊆
⋂
{Lβ(a) : ma ∈ P}. On the other hand, let

Z ∈
⋂
{Lβ(a) : ma ∈ P}, we will prove that Z ∈ Rm(P ). Suppose, contrary to our claim,

that Z /∈ Rm(P ). Then, there exists a ∈ m−1(P ) such that Z∩β(a) = ∅. By assumption,

Z ∈ Lβ(a), i.e., Z ∩ β(a) 6= ∅, which is a contradiction. Therefore, Z ∈ Rm(P ).

The indentity Gm (P ) =
⋂
{(Dβ(a))

c : ma /∈ P} is proved similarly. �

Lemma 31. Let 〈A,m〉 ∈ MDS. Then Rm(P ) = ψX(A)(Gm(P )) and Gm(P ) =

φX(A)(Rm(P )). Therefore the sets Rm(P ) and Gm(P ) are closed sets of the Galois

connection (φX(A), ψX(A)).

Proof. First, we will prove that Rm(P ) = ψX(A)(Gm(P )). Let Z ∈ Rm(P ). Then,

m−1(P ) ∩ IA(Z) = ∅. Let Y ∈ Gm(P ). By definition, FY ⊆ m−1(P ) and we get that

FY ∩ IA(Z) = ∅. From Proposition 15, Y ∩ Z 6= ∅. Now, let Z ∈ S(X(A)) and suppose

that for all Y ∈ Gm(P ), Z ∩ Y 6= ∅. Let a ∈ m−1(P )∩ IA(Z). So, [a) ⊆ m−1(P ) and by

hypothesis [̂a) ∩ Z = β(a) ∩ Z 6= ∅. Then a /∈ IA(Z) which is a contradiction.

The other equality is proved analogously. �

From now on, we consider a monotonic DS-space as an S-monotonic DS-space. It is

clear how we can construct one kind of space from the other, and there is no particular

reason we have chosen S-monotonic DS-spaces as our default other than to keep things

simple and avoid repetition obtaining similar theorems and propositions.

Definition 32. Given 〈A,m〉 ∈ MDS, the structure 〈X(A), TA, Rm〉 is the monotonic

DS-space associated to 〈A,m〉.

Definition 33. The algebra 〈D(X),mR〉 is the monotonic distributive semilattice asso-

ciated to the monotonic DS-space 〈X, T , R〉.

Now, we are able to enunciate the representation theorem.

Theorem 34 (of Representation). Let 〈A,m〉 ∈ MDS. Then, the structure

〈Up(X(A)),∩,mRm , X(A)〉 is a monotonic distributive semilattice and the map β : A→
Up(X(A)) defined by

β(a) = {P ∈ X(A) : a ∈ P}
is an injective homomorphism of monotonic distributive semilattices.

Proof. It follows from Theorem 3 and the fact that for all a ∈ A, mRm(β(a)) = β(ma).

�

Corollary 35. Let 〈A,m〉 ∈ MDS. Then, the map β : A→ D(X(A)) defined by

β(a) = {P ∈ X(A) : a ∈ P}
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is an isomorphism of monotonic distributive semilattices.

We note that if 〈X, T , R〉 is a monotonic DS-space, then we have that

〈X(D(X)), TD(X), RmR〉 is the monotonic space associated to 〈D(X),mR〉. In [4] Celani

has proved that the map

HX : X → X(D(X))

defined by

HX(x) = {U ∈ D(X) : x ∈ U},
is an homeomorphism between DS-spaces and an order isomorphism with respect to ≤.

Now we introduce the following definition.

Definition 36. Let 〈X1, T1, R1〉 and 〈X2, T2, R2〉 be two monotonic DS-spaces. A map

f : X1 → X2 is an isomorphism of DS-spaces if it satisfies,

(1) f is a homeomorphism,

(2) (x, Z) ∈ R1 if and only if (f(x), f [Z]) ∈ R2, for all x ∈ X1 and for each Z ∈
S(X1),

where f [Z] = {f(z) : z ∈ Z}.

Proposition 37. Let 〈X1, T1〉 and 〈X2, T2〉 be two DS-spaces and let f : X1 → X2 be a

homeomorphism. Then, f [Z] ∈ S(X2) for all Z ∈ S(X1) and for all S ∈ S(X2) there

exists Z ∈ S(X1) such that S = f [Z].

Remark 38. Let 〈X, T 〉 be a DS-space. Then, HX [Z] ∈ S(X(D(X)) for all Z ∈ S(X)

and for all S ∈ S(X(D(X)) there exists Z ∈ S(X) such that S = HX [Z]. Also, we have

that HX [U ] = {HX(u) : u ∈ U} = βD(X)(U) for all U ∈ D(X). Then,

Z ∩ U = ∅ ⇔ HX [Z] ∩ βD(X)(U) = ∅

for all Z ∈ S(X) and U ∈ D(X).

Theorem 39. Let 〈X, T , R〉 be a monotonic DS-space. Then, the map HX : X →
X(D(X)) defined by

HX(x) = {U ∈ D(X) : x ∈ U}
is an isomorphism of monotonic DS-spaces.

Proof. By [4] and [1], it is only left to prove that (x, Z) ∈ R iff (HX(x), HX [Z]) ∈ RmR .

⇒) Let Z ∈ S(X) such that (x, Z) ∈ R. We will see that HX [Z] ∩ βD(X)(U) 6= ∅ for

all U ∈ m−1R (HX(x)). Let U ∈ D(X) such that U ∈ m−1R (HX(x)), i.e., mR(U) ∈ HX(x).

Then, x ∈ mR(U). Since Z ∈ R(x), we get that Z ∩ U 6= ∅ and by Remark 38,

HX [Z] ∩ βD(X)(U) 6= ∅. Therefore, U /∈ ID(X)(HX [Z]).

⇐) Suppose that (HX(x), HX [Z]) ∈ RmR . Then, HX [Z] ∩ βD(X)(U) 6= ∅ for all

U ∈ m−1R (HX(x)), i.e., for all U ∈ D(X) such that x ∈ mR(U). We will prove that

(x, Z) ∈ R. To do so, suppose that Z /∈ R(x). From condition (4) of Definition 26 we

have that there exists U ∈ D(X) such that x ∈ mR(U) and Z∩U = ∅. Then, by Remark

38, HX [Z] ∩ βD(X)(U) = ∅, which is a contradiction. Therefore, Z ∈ R(x). �
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By the following result we get that the dual spaces of monotonic distributive semilat-

tices are exactly those triples 〈X, T , R〉, where 〈X, T 〉 is a DS-space, R ⊆ X × S(X),

mR(U) ∈ D(X), for all U ∈ D(X), and 〈X, T , R〉 satisfies any of the equivalent condi-

tions of Theorem 41.

Lemma 40. Let 〈X, T , R〉 be a monotonic DS-space. Then R(x) is an upset of

〈S(X),⊆〉, i.e., for all S,Z ∈ S(X), and for all x ∈ X, if S ⊆ Z and S ∈ R(x),

then Z ∈ R(x).

Proof. Let S,Z ∈ S(X), and x ∈ X, such that S ⊆ Z and S ∈ R(x). If Z /∈ R(x),

then by condition (4) of Definition 26, there exists U ∈ D(X) such that Z ∩ U = ∅
and x ∈ mR(U). But this implies that S ∩ U = ∅ and x ∈ mR(U), which is impossible

because S ∈ R(x). Thus, R(x) is an upset of 〈S(X),⊆〉. �

Theorem 41. Let 〈X, T 〉 be a DS-space. Consider a relation R ⊆ X ×S(X) such that

mR(U) = {x ∈ X : ∀Z ∈ R(x)[Z ∩ U 6= ∅]} ∈ D(X) for all U ∈ D(X). Then, the

following conditions are equivalent,

(1) R(x) =
⋂
{LU : x ∈ mR(U) and U ∈ D(X)} for all x ∈ X,

(2) For all x ∈ X and for all Z ∈ S(X), if (HX(x), HX [Z]) ∈ RmR then (x, Z) ∈ R,

(3) mR(Zc) =
⋃
{mR(U) : Z ⊆ U c and U ∈ D(X)} for all Z ∈ S(X), and R(x) is

an upset of 〈S(X),⊆〉 for all x ∈ X.

Proof. 1.⇒ 2. It was proved in the previous theorem.

2.⇒ 1. Let x ∈ X. The inclusion R(x) ⊆
⋂
{LU : x ∈ mR(U)} is clear. Let Z ∈ S(X)

such that Z ∈
⋂
{LU : x ∈ mR(U)}. We will prove that (HX(x), HX [Z]) ∈ RmR . Let

U ∈ D(X) such that x ∈ mR(U). Then, Z ∈ LU , i.e., Z ∩ U 6= ∅. By Remark 38,

we have that HX [Z] ∩ βD(X)(U) 6= ∅. Thus, we have that for all U ∈ D(X) such

that U ∈ m−1R (HX(x)), HX [Z] ∩ βD(X)(U) 6= ∅, i.e., U /∈ ID(X)(HX [Z]). Therefore,

(HX(x), HX [Z]) ∈ RmR and by assumption, Z ∈ R(x) and it follows that
⋂
{LU : x ∈

mR(U)} ⊆ R(x).

1. ⇒ 3. Let x ∈ mR(Zc). Then, for all S ∈ R(x) we have that S ∩ Zc 6= ∅. So,

Z /∈ R(x). By assumption, Z /∈
⋂
{LU : x ∈ mR(U)}, i.e., there exists U ∈ D(X) such

that x ∈ mR(U) and Z ∩ U = ∅. Thus, x ∈
⋃
{mR(U) : Z ⊆ U c and U ∈ D(X)}. The

other inclusion is trivial. The last part is a consequence of Lemma 40.

3. ⇒ 1. Let x ∈ X and Z ∈
⋂
{LU : x ∈ mR(U) and U ∈ D(X)}. Suppose that Z /∈

R(x). We will see that x ∈ mR(Zc). On the contrary, suppose that x /∈ mR(Zc). Then,

there exists S ∈ R(x) such that S ∩ Zc = ∅. So, S ⊆ Z and by assumption Z ∈ R(x)

which is a contradiction. Thus, x ∈ mR(Zc) =
⋃
{mR(U) : Z ⊆ U c and U ∈ D(X)}, i.e.,

there exists U ∈ D(X) such that x ∈ mR(U) and Z ∩U = ∅, a contradiction. Therefore

Z ∈ R(x). The other inclusion is trivial. �

4.1. Representation of homomorphisms. In [4] and [1] it was shown that there

exists a duality between homomorphisms of distributive semilattices and certain binary

relations called meet-relations. It is also known that DS-spaces with meet-relations form
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a category. Now, we shall study the representation of homomorphisms of monotonic

distributive semilattices.

Let S ⊆ X1 × X2 be a binary relation. Consider the mapping hS : P(X2) → P(X1)

defined by

hS(U) = {x ∈ X1 : S(x) ⊆ U}.
A meet-relation between two DS-spaces 〈X1, T1〉 and 〈X2, T2〉 was defined as a subset

S ⊆ X1 ×X2 satisfying the following conditions:

(1) For every U ∈ D(X2), hS(U) ∈ D(X1), and

(2) S(x) =
⋂
{U ∈ D(X2) : S(x) ⊆ U} for all x ∈ X1.

If S is a meet-relation, then hS is a homomorphism between distributive semilattices.

On the other hand, let A,B ∈ DS. Let h : A→ B be a homomorphism. The binary

relation Sh ⊆ X(B)×X(A) defined by

(P,Q) ∈ Sh iff h−1[P ] ⊆ Q

is a meet-relation, where h−1[P ] = {a ∈ A : h(a) ∈ P}.

Definition 42. Let 〈X1, T1, R1〉 and 〈X2, T2, R2〉 be two monotonic DS-spaces. Let us

consider a meet-relation S ⊆ X1 × X2. We say that S is a monotonic meet-relation if

for all x ∈ X1 and every U ∈ D(X2) it satisfies

(4.5) U c ∈ R2[S(x)] iff S−1[U c] ∈ R1(x)

where R2[S(x)] = {Z ∈ S(X2) : ∃y ∈ S(x) [(y, Z) ∈ R2]}.

Remark 43. Note that if S ⊆ X1×X2 is a meet-relation between two DS-spaces 〈X1, T1〉
and 〈X2, T2〉, then S−1[U c] = hS(U)c ∈ S(X1).

Proposition 44. The condition (4.5) is equivalent to the condition

hS(mR2(U)) = mR1(hS(U))

for all U ∈ DK2(X2), i.e., the mapping hS : D(X2) → D(X1) is a homomorphism of

monotonic distributive semilattices.

Proof. ⇒) Suppose that for all x ∈ X1 and every U ∈ D(X2), U
c ∈ R2[S(x)] if and only

if S−1[U c] ∈ R1(x). Let x ∈ hS(mR2(U)), i.e., S(x) ⊆ mR2(U). Then, for all y ∈ S(x)

we have that y ∈ mR2(U). So, for all y ∈ S(x) and for all Z ∈ R2(y) we have that

Z ∩ U 6= ∅. Then, for all y ∈ S(x), U c /∈ R2(y). Thus, U c /∈ R2[S(x)]. By hypothesis,

S−1[U c] /∈ R1(x). Therefore, x ∈ mR1(S−1[U c]c) = mR1(hS(U)). The other inclusion is

obtained reverting the implications.

⇐) Suppose that hS is a homomorphism. Let U c ∈ R2[S(x)]. Then, there exists

y ∈ S(x) such that U c ∈ R2(y). So, y /∈ mR2(U). Thus, S(x) * mR2(U), i.e., x /∈
hS(mR2(U)). By hypothesis, x /∈ mR1(hS(U)), i.e., there exists Z ∈ R1(x) such that

Z ∩ hS(U) = ∅. We have that Z ⊆ hS(U)c and since hS(U)c ∈ S(X) we have that

S−1[U c] = hS(U)c ∈ R1(x). The other implication is obtained similarly. �
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Now, we will study the composition of monotonic meet-relations. Let X1, X2 and X3

be sets. Let us consider two relations S1 ⊆ X1 × X2 and S2 ⊆ X2 × X3. Then, the

composition of S1 and S2 is the relation S2 ◦ S1 ⊆ X1 ×X3 defined by

S2 ◦ S1 = {(x, z) ∈ X1 ×X3 : ∃y ∈ X2[(x, y) ∈ S1 and (y, z) ∈ S2}.

Proposition 45. Let 〈X1, T1, R1〉, 〈X2, T2, R2〉 and 〈X3, T3, R3〉 be three monotonic DS-

spaces. Let us consider two monotonic meet-relations S1 ⊆ X1×X2 and S2 ⊆ X2×X3.

Then, S3 = S2 ◦ S1 ⊆ X1 ×X3 is a monotonic meet-relation.

Proof. It follows from the fact that hS3(U) = hS2◦S1(U) = hS1 ◦ hS2(U) for all U ∈
DK3(X3), definition 42 and proposition 44. �

Proposition 46. Let 〈X, T , R〉 be a monotonic DS-space. The specialization dual order

≤⊆ X ×X is a monotonic meet-relation.

Proof. ⇒) Let U ∈ D(X) and suppose that U c ∈ R([x)). Then, there exists y ≥ x such

that U c ∈ R(y) and since R(y) ⊆ R(x), we have that U c ∈ R(x). As U c is a downset,

≤−1 [U c] = U c.

The other implication is trivial. �

So, monotonic DS-spaces with monotonic meet-relations form a category where the

identity arrow is the specialization dual order. We will denote this category byMDSR.

Proposition 47. Let 〈A,mA〉, 〈B,mB〉 ∈ MDS.

(1) Let h : A → B be a monotonic homomorphism. Then, the meet-relation Sh
satisfies condition (4.5).

(2) Let h : A→ B be a homomorphism and suppose that the meet-relation Sh satisfies

condition (4.5). Then, h is monotonic.

Proof. 1. Suppose that h is a monotonic homomorphism. So, it is easy to see that

hSh
(βA(a)) = βB(h(a)) for all a ∈ A. Then, we have

hSh
(mRmA

βA(a)) = hSh
(βA(mAa)) = βB(h(mAa))

= βB(mBh(a)) = mRmB
(βB(h(a)))

= mRmB
(hSh

(βA(a)))

for all a ∈ A.

2. Suppose that h is a homomorphism and that Sh satisfies condition (4.5). Then,

hSh
(βA(a)) = βB(h(a)) for all a ∈ A. So, we have

βB(h(mAa)) = hSh
(βA(mAa)) = hSh

(mRmA
βA(a))

= mRmB
(hSh

(βA(a))) = mRmB
(βB(h(a)))

= βB(mBh(a))

and since βB is an injective function, we get that h(mAa) = mBh(a) for all a ∈ A. �

From Theorem 39 and Proposition 44, we conclude that the functor D : MDSR →
MDSH defined by
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(1) D(X) = 〈D(X),mR〉 if 〈X, T , R〉 is a DS-space,

(2) D(S) = hS if S is a monotonic meet-relation

is a contravariant functor. By Theorem 34, Corollary 35 and Proposition 47, we conclude

that the functor X :MDSH →MDSR defined by

(1) X(A) = 〈X(A); TA, Rm〉 if 〈A,m〉 is a monotonic distributive semilattice,

(2) X(h) = Sh if h is homomorphism of monotonic distributive semilattices

is a contravariant functor. Therefore, we give the following result.

Corollary 48. The categories MDSH and MDSR are dually equivalent.

5. Applications of the duality

In this section we consider some applications of the duality. We will consider some

important subclasses and show how our new duality extends the one developed in [3] for

Boolean algebras.

5.1. Additional conditions. Now we will see how some additional conditions affect

the relations associated to the monotonic operator.

The following formulas are π- and σ-canonical, i.e., their validity is preserved under

taking π- and σ-canonical extensions.

Proposition 49. Let 〈A,m〉 ∈ MDS. Then,

(1) m1 = 1 iff ∀P ∈ X(A) [∅ /∈ Rm(P )] iff ∀P ∈ X(A) [X(A) ∈ Gm(P )];

(2) m0 = 0 iff ∀P ∈ X(A) [X(A) ∈ Rm(P )] iff ∀P ∈ X(A) [∅ /∈ Gm(P )];

(3) ∀a ∈ A [ma ≤ a] iff ∀P ∈ X(A) [α(P c) = (P ] ∈ Rm(P )] iff

∀P ∈ X(A)∀Y ∈ Gm(P ) [P ∈ Y ];

(4) ∀a ∈ A [a ≤ ma] iff ∀P ∈ X(A)∀Z ∈ Rm(P ) [P ∈ Z] iff

∀P ∈ X(A) [P̂ = [P ) ∈ Gm(P )].

Proof. 1. Suppose that m1 = 1 and suppose that there exists P ∈ X(A) such that

∅ ∈ Rm(P ). Then, m1 = 1 ∈ P and m−1(P ) ∩ IA(∅) = m−1(P ) ∩ A = ∅ and it follows

that m−1(P ) = ∅ which is a contradiction.

Now, suppose that for all P ∈ X(A) we have ∅ /∈ Rm(P ) and suppose that there exists

P ∈ X(A) such that X(A) /∈ Gm(P ). Then, FX(A) = {1} * m−1(P ) , i.e., 1 /∈ m−1(P ).

Since P is an upset, m−1(P ) = ∅. So, we have that m−1(P ) ∩A = m−1(P ) ∩ IA(∅) = ∅
and by definition ∅ ∈ Rm(P ) which is a contradiction.

Suppose that for all P ∈ X(A) we have X(A) ∈ Gm(P ) and suppose that m1 6= 1.

Then, there exists P ∈ X(A) such that m1 /∈ P . So, we have that FX(A) = {1} *
m−1(P ) which is a contradiction.

2. The proof is similar to 1.

3. Suppose that ma ≤ a for all a ∈ A and that there exists P ∈ X(A) such that

(P ] /∈ Rm(P ). Then, m−1(P ) ∩ P c 6= ∅. So, there exists a ∈ A such that ma ∈ P and

a /∈ P , which is a contradiction.

Now, suppose that for all P ∈ X(A) we have (P ] ∈ Rm(P ) and suppose that there

exists P ∈ X(A) and there exists Y ∈ Gm(P ) such that P /∈ Y . Then, FY ⊆ m−1(P )
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and there exists a ∈ FY such that a /∈ P . So, a ∈ m−1(P ) ∩ P c and it follows that

(P ] /∈ Rm(P ) which is a contradiction.

Suppose that for all P ∈ X(A) and for all Y ∈ Gm(P ) we have P ∈ Y and suppose

that ma � a. Then, there exists P ∈ X(A) such that ma ∈ P and a /∈ P . So, we have

that [a) ⊆ m−1(P ) but P /∈ [̂a) which is a contradiction.

4. The proof is similar to 3. �

Now, we will characterize the dual spaces of monotonic distributive meet-semilattices

satisfying condition (4�) ma ≤ m2a or condition (4♦) m2a ≤ ma for every element a.

We will see that condition 4� is σ-canonical and that condition 4♦ is π-canonical.

Let 〈X, T , R〉 be a monotonic DS-space. For any U ∈ Up(X), we define the operator

m2
R : Up(X)→ Up(X) by m2

R(U) = mR(mR(U)).

Remark 50. Let 〈X, T , R〉 be a monotonic DS-space and let Z ∈ S(X). Then recall

that mR(Zc)c =
⋂
{mR(U)c : U ∈ D(X) and Z ⊆ U c}.

Proposition 51. Let 〈A,m〉 ∈ MDS such that m2a ≤ ma for all a ∈ A. Then,

m2
Rm

(U) ⊆ mRm(U) for all U ∈ Up(X(A)), i.e., 4♦ is π-canonical.

Proof. Let A ∈MDS such that m2a ≤ ma for all a ∈ A. Then, for all U ∈ D(X(A)) we

have that m2
Rm

(U) ⊆ mRm(U). First, we will see that m2
Rm

(Zc) ⊆ mRm(Zc) for all Z ∈
S(X(A)). Let P ∈ m2

Rm
(Zc). So, we get that mRm(Zc)c /∈ Rm(P ). Suppose that P /∈

mRm(Zc). Then, we get that Z ∈ Rm(P ). Since Rm(P ) =
⋂
{LU : U ∈ D(X) and P ∈

mRm(U)}, there exists U ∈ D(X) such that P ∈ mRm(U) and mRm(Zc)c ∩ U = ∅. By

the previous remark, there exists V ∈ D(X) such that Z ⊆ V c and mRm(V )c ∩ U = ∅.
Thus, U ⊆ mRm(V ) and by hypothesis P ∈ mRm(U) ⊆ m2

Rm
(V ) ⊆ mRm(V ). Since

P ∈ mRm(V ) and Z ∈ Rm(P ) we get that Z ∩ V 6= ∅ which is a contradiction.

Now, we will see that m2
Rm

(U) ⊆ mRm(U) for all U ∈ Up(X(A)). Let P ∈ m2
Rm

(U)

and suppose that P /∈ mRm(U). Then, there exists Z ∈ Rm(P ) such that Z∩U = ∅. So,

U ⊆ Zc and we get that mRm(U) ⊆ mRm(Zc). Thus, mRm(U)∩mRm(Zc)c = ∅ and since

P ∈ m2
Rm

(U) we get that mRm(Zc)c /∈ Rm(P ). Therefore P ∈ m2
Rm

(Zc) ⊆ mRm(Zc)

which is a contradiction because Z ∈ Rm(P ). �

Let 〈X, T , R〉 be a monotonic DS-space. We will define a relation R̄ ⊆ S(X)×S(X)

by

(S,Z) ∈ R̄⇔ ∀x ∈ S (x, Z) ∈ R.

We define R2 ⊆ X × S(X) as follows

(x, Z) ∈ R2 ⇔ ∃S ∈ S(X) such that (x, S) ∈ R and (S,Z) ∈ R̄.

Definition 52. Let 〈X, T , R〉 be a monotonic DS-space. The relation R is transitive if

and only if for all x ∈ X and for all Z ∈ S(X) if (x, Z) ∈ R2 then (x, Z) ∈ R.

Definition 53. Let 〈X, T , R〉 be a monotonic DS-space. The relation R is weakly dense

if and only if for all x ∈ X and for all Z ∈ S(X) if (x, Z) ∈ R then (x, Z) ∈ R2.
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Corollary 54. Let 〈A,m〉 ∈ MDS. Then, IA(mRm(α(I)c)c) = (m(I)] where m(I) =

{ma : a ∈ I}.

Lemma 55. Let A ∈ MDS. Then for all P ∈ X(A) and I ∈ Id(A), (P, α(I)) ∈ R2
m if

and only if I ⊆ {a ∈ A : m2a ∈ P c}.

Proof. ⇒) Suppose that (P, α(I)) ∈ R2
m and let a ∈ I. Suppose that m2a ∈ P . Then,

there exists J ∈ Id(A) such that (P, α(J)) ∈ Rm and (α(J), α(I)) ∈ R̄m. So, m−1(P ) ∩
J = ∅ and ma /∈ J . Thus, there exists Q ∈ α(J) such that ma ∈ Q. Therefore,

(Q,α(I)) ∈ Rm and a /∈ I which is a contradiction.

⇐) Suppose that I ⊆ {a ∈ A : m2a ∈ P c}. We will prove that mRm(α(I)c)c ∈
Rm(P ). Since IA(mRm(α(I)c)c) = (m(I)], suppose that there exists a ∈ A such that a ∈
m−1(P )∩(m(I)]. So, ma ∈ P and there exists b ∈ I such that a ≤ mb. Then, ma ≤ m2b

and we get that m2b ∈ P∩P c which is a contradiction. Therefore, mRm(α(I)c)c ∈ Rm(P )

and (mRm(α(I)c)c, α(I)) ∈ R̄m, i.e., (P, α(I)) ∈ R2
m. �

Proposition 56. Let A ∈ MDS. Then ma ≤ m2a for all a ∈ A if and only if Rm is

transitive.

Proof. ⇒) Suppose that ma ≤ m2a for all a ∈ A and that (P,Z) ∈ R2
m. Then, IA(Z) ⊆

{a ∈ A : m2a ∈ P c}. Suppose that m−1(P ) ∩ IA(Z) 6= ∅. We get that there exists

a ∈ A such that ma ∈ P and a ∈ IA(Z). Therefore m2a /∈ P and m2a ∈ P which is a

contradiction. Since m−1(P ) ∩ IA(Z) = ∅ we get that (P,Z) ∈ Rm.

⇐) Suppose that Rm is transitive and suppose that there exists a ∈ A such that

ma � m2a. Then, there exists P ∈ X(A) such that ma ∈ P and m2a /∈ P . So, (a] ⊆
{a ∈ A : m2a ∈ P c} and by Lemma 55, (P, α(a)) ∈ R2

m. We get that (P, α(a)) ∈ Rm,

i.e., ma /∈ P , which is a contradiction. �

Proposition 57. Let A ∈ MDS. Then m2a ≤ ma for all a ∈ A if and only if Rm is

weakly dense.

Proof. ⇒) Suppose that m2a ≤ ma for all a ∈ A and that (P,Z) ∈ Rm. We will prove

that IA(Z) ⊆ {a ∈ A : m2a ∈ P c}. Let a ∈ IA(Z). Since m−1(P ) ∩ IA(Z) = ∅ we get

that ma /∈ P and therefore m2a /∈ P . By Lemma 55, (P,Z) ∈ R2
m.

⇐) Suppose that Rm is weakly dense. Suppose that there exists a ∈ A such that

m2a � ma. Then, there exists P ∈ X(A) such that m2a ∈ P and ma /∈ P . Then,

(P, α(a)) ∈ Rm. So, (P, α(a)) ∈ R2
m and, by Lemma 55, (a] ⊆ {a ∈ A : m2a ∈ P c}, i.e.,

m2a /∈ P , which is a contradiction. �

For the sake of completeness we add the corresponding definitions and theorems for

C-monotonic DS-spaces.

Let 〈X, T , G〉 be a C-monotonic DS-space. For any U ∈ Up(X) we define the operator

m2
G : Up(X)→ Up(X) by m2

G(U) = mG(mG(U)).

Remark 58. Let 〈X, T , G〉 be a C-monotonic DS-space and Y ∈ C(X). Recall that

mG(Y ) =
⋂
{mG(U) : U ∈ D(X) and Y ⊆ U}.
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Proposition 59. Let 〈A,m〉 ∈ MDS such that ma ≤ m2a for all a ∈ A. Then,

mGm(U) ⊆m2
Gm

(U) for all U ∈ Up(X(A)), i.e., 4� is σ-canonical.

Proof. Let A ∈ MDS such that ma ≤ m2a for all a ∈ A. Then, for all U ∈ D(X(A))

we have that mGm(U) ⊆ m2
Gm

(U). First, we will see that mGm(Y ) ⊆ m2
Gm

(Y ) for

all Y ∈ C(X(A)). Let P ∈ mGm(Y ). So, we get that Y ∈ Gm(P ). Suppose that

P /∈ m2
Gm

(Y ). Then, we get that mGm(Y ) /∈ Gm(P ). Since Gm(P ) =
⋂
{(DU )c :

U ∈ D(X) and P /∈ mGm(U)}, there exists U ∈ D(X) such that P /∈ mGm(U) and

mGm(Y ) ⊆ U . By the previous remark, there exists V ∈ D(X) such that Y ⊆ V and

mGm(Y ) ⊆ mGm(V ) ⊆ U . Thus, P ∈ mGm(V ) and by hypothesis P ∈ m2
Gm

(V ) ⊆
mGm(U) which is a contradiction.

Now, we will see that mGm(U) ⊆m2
Gm

(U) for all U ∈ Up(X(A)). Let P ∈mGm(U).

Then, there exists Y ∈ Gm(P ) such that Y ⊆ U . So, mGm(Y ) ⊆ mGm(U) and we get

that P ∈mGm(Y ) ⊆m2
Gm

(Y ) ⊆m2
Gm

(U). Thus, P ∈m2
Gm

(U). �

Let 〈X, T , G〉 be a C-monotonic DS-space. We will define a relation Ḡ ⊆ C(X)×C(X)

by

(Y,C) ∈ Ḡ⇔ ∀x ∈ Y (x,C) ∈ G.
We define G2 ⊆ X × C(X) as follows

(x, Y ) ∈ G2 ⇔ ∃C ∈ C(X) such that (x,C) ∈ G and (C, Y ) ∈ Ḡ.

Definition 60. Let 〈X, T , G〉 be a C- monotonic DS-space. The relation G is transitive

if and only if for all x ∈ X and for all Y ∈ C(X) if (x, Y ) ∈ G2 then (x, Y ) ∈ G.

Definition 61. Let 〈X, T , G〉 be a a C- monotonic DS-space. The relation G is weakly

dense if and only if for all x ∈ X and for all Y ∈ C(X) if (x, Y ) ∈ G then (x, Y ) ∈ G2.

Lemma 62. Let A ∈ MDS and F ∈ Fi(A). Then, FmGm (F̂ ) = [m(F )) where m(F ) =

{ma : a ∈ F}.

Lemma 63. Let A ∈ MDS. Then for all P ∈ X(A) and F ∈ Fi(A), (P, F̂ ) ∈ G2
m ⇔

F ⊆ {a ∈ A : m2a ∈ P}.

Proposition 64. Let A ∈ MDS. Then ma ≤ m2a for all a ∈ A if and only if Gm is

weakly dense.

Proposition 65. Let A ∈ MDS. Then m2a ≤ ma for all a ∈ A if and only if Gm is

transitive.

5.2. Modal distributive semilattices. In this section we consider distributive semi-

lattices endowed with a normal modal operator, i.e., a function that preserves the great-

est element and finite meets.

Definition 66. A modal distributive semilattice is an algebra 〈A,m〉 where A is a dis-

tributive semilattice and m : A→ A is an operator that verifies the following conditions:

(1) m1 = 1,

(2) m(a ∧ b) = ma ∧mb for all a, b ∈ A.
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It is clear that m is a homomorphism and that a modal distributive semilattice is a

monotonic distributive semilattice. Thus, a modal operator m could be represented by

means of an adequate multirelation defined in the dual space and by a meet-relation.

Now we are going to identify what additional conditions must satisfy this multirelation.

Remark 67. Let 〈X, T , R〉 be a monotonic DS-space. Since (x] =
⋂
{U ∈ KO(X) : x ∈

U} and KO(X) is a basis, we have that (x] ∈ S(X) for each x ∈ X.

Remark 68. Given a modal distributive semilattice 〈A,m〉, we note that m−1(F ) ∈
Fi(A) for all F ∈ Fi(A). We also note that IA((Q]) = Qc for all Q ∈ X(A).

Definition 69. A monotonic DS-space 〈X, T , R〉 is called normal if for any x ∈ X and

for every Z ∈ S(X) such that Z ∈ R(x) there exists z ∈ Z such that (z] ∈ R(x).

Note that in every normal monotonic DS-space 〈X, T , R〉 for all x ∈ X, ∅ /∈ R(x).

Proposition 70. Let 〈A,m〉 be a monotonic distributive semilattice. Then 〈A,m〉 is a

modal distributive semilattice iff 〈X(A), TA, Rm〉 is a normal monotonic DS-space.

Proof. ⇒) Let (P, α(I)) ∈ Rm. Then, m−1(P ) ∩ I = ∅. Since 〈A,m〉 is a modal

distributive semilattice, we have that m−1(P ) ∈ Fi(A). So, there exists Q ∈ X(A)

such that m−1(P ) ⊆ Q and Q ∩ I = ∅. Thus, Q ∈ α(I) and it is easy to see that

m−1(P ) ∩Qc = ∅ and therefore, (P, (Q]) ∈ Rm.

⇐) Let 〈X(A), TA, Rm〉 be a normal monotonic DS-space. Suppose that there exist

a, b ∈ A such that ma ∧ mb � m(a ∧ b). Then, there exists P ∈ X(A) such that

ma∧mb ∈ P but m(a∧ b) /∈ P . Note that ma∧mb ≤ ma ∈ P and ma∧mb ≤ mb ∈ P .

So, we have that (P, α(a ∧ b)) ∈ Rm and since 〈X(A), TA, Rm〉 is a normal monotonic

DS-space, there exists Q ∈ α(a ∧ b) such that (P, (Q]) ∈ Rm. From IA((Q]) = Qc we

get that m−1(P ) ∩ Qc = ∅. Thus, a, b ∈ m−1(P ) ⊆ Q and, since Q is a filter, we have

that a ∧ b ∈ Q. Hence, Q ∩ (a ∧ b] 6= ∅ which contradicts the fact that Q ∈ α(a ∧ b).
Therefore 〈A,m〉 is a modal distributive semilattice. �

Since a normal modal operator is also a homomorphism of meet semilattices, we can

also interpret it through a meet-relation in the dual space. We will show the relationship

between the multirelation and the meet-relation associated to the same operator.

Let 〈X, T 〉 be a DS-space and let S ⊆ X ×X be a meet-relation. Let mS : Up(X)→
Up(X) be the operator defined by

mS(U) = {x ∈ X : S(x) ⊆ U}

where S(x) = {y ∈ X : (x, y) ∈ S}. We define a multirelation RS ⊆ X × S(X) by

(x, Z) ∈ RS ⇔ S(x) ∩ Z 6= ∅.

On the other hand, let 〈X, T , R〉 be a normal monotonic DS-space. We define a relation

SR ⊆ X ×X by

(x, z) ∈ SR ⇔ (x, (z]) ∈ R.
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Proposition 71. (1) Let 〈X, T , R〉 be a normal monotonic DS-space. Then, the

structure 〈X, T , SR〉 is a DS-space with a meet-relation SR such that mR(U) =

mSR
(U) for all U ∈ Up(X) and R = RSR

.

(2) Let 〈X, T , S〉 be a DS-space with a meet-relation S ⊆ X×X . Then, the structure

〈X, T , RS〉 is a normal monotonic DS-space such that mRS
(U) = mS(U) for all

U ∈ Up(X), and S = SRS
.

Proof. 1. Let U ∈ Up(X). We will prove that mR(U) = mSR
(U). Let x ∈ mR(U) and

z ∈ SR(x). Then, (x, (z]) ∈ R and we get that (z]∩U 6= ∅. Since U is an upset, we have

that z ∈ U . Thus, SR(x) ⊆ U and x ∈ mSR
(U). Let x ∈ mSR

(U) and Z ∈ R(x). Then,

there exists z ∈ Z such that (z] ∈ R(x). By definition (x, z) ∈ SR(x). So, z ∈ U and we

get that Z ∩ U 6= ∅. Thus, x ∈ mR(U).

So, we have that mR(U) = mSR
(U) ∈ D(X) for all U ∈ D(X). We will see that

SR(x) =
⋂
{U ∈ D(X) : SR(x) ⊆ U} for all x ∈ X. Let x, z ∈ X such that z ∈

⋂
{U ∈

D(X) : SR(x) ⊆ U}. Then, z ∈ U for all U ∈ D(X) such that x ∈ mSR
(U) = mR(U).

By condition (4) of Definition 26, (z] ∈ R(x). Therefore, z ∈ SR(x).

Now, let (x, Z) ∈ R. We will see that SR(x) ∩ Z 6= ∅. Since 〈X, T , R〉 is a normal

monotonic DS-space, there exists z ∈ Z such that (z] ∈ R(x). By definition z ∈
SR(x)∩Z. Let (x, Z) ∈ RSR

. Then, SR(x)∩Z 6= ∅. Let z ∈ Z such that (x, z) ∈ SR. By

definition of SR, (x, (z]) ∈ R. So, (z] ⊆ Z and by Proposition 40, (x, Z) ∈ R. Therefore

R = RSR
.

2. Let U ∈ Up(X). We will prove that mRS
(U) = mS(U). Let x ∈ mRS

(U) and

z ∈ S(x). Then, S(x) ∩ (z] 6= ∅. By definition of RS , (x, (z]) ∈ RS . So, (z] ∩ U 6= ∅
and since U is an upset, we have that z ∈ U . Thus, S(x) ⊆ U and x ∈ mS(U). Let

x ∈ mS(U) and let Z ∈ RS(x). Then, there exists z ∈ Z such that z ∈ S(x). So, z ∈ U
and we get that Z ∩ U 6= ∅. Thus, x ∈ mRS

(U).

So, we have that mS(U) = mRS
(U) ∈ D(X) for all U ∈ D(X). We will see that

〈X, T , RS〉 is a normal monotonic DS-space. Let x ∈ X, Z ∈
⋂
{LU : x ∈ mRS

(U)} and

suppose that Z /∈ RS(x). By definition, Z ∩ S(x) = ∅ and since S(x) is a closed subset,

there exists U ∈ D(X) such that Z ⊆ U c and S(x)∩U c = ∅, i.e., x ∈ mS(U) = mRS
(U)

and Z ∩ U = ∅, which is a contradiction. Therefore, RS(x) =
⋂
{LU : x ∈ mRS

(U)}.
Now, let x ∈ X and Z ∈ RS(x). Then, there exists z ∈ S(x)∩Z. So, S(x)∩ (z] 6= ∅ and

by definition of RS , (x, (z]) ∈ RS .

Finally, let (x, z) ∈ S. Then z ∈ S(x)∩(z] and, by definition, (x, (z]) ∈ RS . Therefore,

(x, z) ∈ SRS
. On the other hand, let (x, z) ∈ SRS

. Then, (x, (z]) ∈ RS . So, S(x)∩(z] 6= ∅.
Since S is a meet-relation, S(x) is an upset. Thus, z ∈ S(x). Therefore S = SRS

. �

Remark 72. Note that as a particular case we get the relation defined in [10] by Mai

Gherke, where she gave an algebraic derivation of the space associated to a bounded

distributive lattice with a modality � that preserves 1 and ∧ based on the canonical

extension. Given the modality � : A → A, since the extension �σ = �π is completely

meet preserving, it is completely determined by its action on the completely meet prime

elements of the canonical extension. Working on Stone spaces, the family S(X(A)) is

the family of all basic saturated sets and recall that M∞(Up(X(A))) = {α(P c)c = (P ]c :
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P ∈ X(A)}. The relation S ⊆ X(A)×X(A) defined in [10] is:

(P,Q) ∈ S ⇔ �π((Q]c) ⊆ (P ]c.

It is easy to see that �π((Q]c) ⊆ (P ]c ⇔ �−1(P ) ∩Qc = ∅.

5.3. Boolean Algebras with a monotonic operator. In paper [3] (see also [13] and

[14]) S. Celani developed a topological duality between monotonic Boolean algebras and

descriptive monotonic frames. These frames are actually monotonic DS-frames.

Recall that a Boolean algebra with a normal monotonic operation, is a pair 〈A,�〉
such that A is a Boolean algebra, and � is an operator defined on A such that

(1) �(a ∧ b) ≤ �a ∧�b for all a, b ∈ A,

(2) �1 = 1.

Also, recall that a Stone space is a topological space X = 〈X, τ〉 that is compact and

totally disconnected, i.e., given distinct points x, y ∈ X, there exists a clopen (closed and

open) subset U of X such that x ∈ U and y /∈ U . Let Clop(X) be the family of closed

and open subsets of a Stone space 〈X, τ〉.
A descriptive m-frame [3], or monotonic modal space, is a triple 〈X,R, τ〉 such that

(1) 〈X, τ〉 is a Stone space,

(2) R ⊆ X × C0(X), where C0(X) = C(X)− {∅},
(3) �R(U) = {x ∈ X : ∀Y ∈ R(x) (Y ∩ U 6= ∅)} ∈ Clop(X) for all U ∈ Clop(X),

(4) R(x) =
⋂
{LU : x ∈ �R(U)}, for all x ∈ X.

Remark 73. It is well known that if 〈X, τ〉 is a Stone space then Clop(X) is a basis for

the topology and S(X) = C(X). As X is Hausdorff, the only irreducible closed sets

are singletons, so X is sober. Then, it is easy to see that any descriptive m-frame is a

monotonic DS-space.

Remark 74. Let A = 〈A,∨,∧,¬, 0, 1〉 be Boolean algebra. Note that if F is a filter of

A, then the set IF = {¬a : a ∈ F} is an ideal of A, and thus F̂ = α(IF ). Similarly, if I

is an ideal of A, then the set FI = {¬a : a ∈ I} is a filter of A, and α(I) = F̂I .

Let 〈A,�〉 be a Boolean algebra endowed with a normal monotonic operator �. Let

♦ : A → A be the dual operator defined by ♦a = ¬�¬a, for each a ∈ A. Following the

construction of the S- and C- monotonic spaces, we have four relations: G♦, G�, R♦ and

R�. The following proposition shows the relationships between them.

Proposition 75. Let 〈A,�〉 be a Boolean algebra endowed with a monotonic operator.

Then, G♦ = R� and G� = R♦.

Proof. We will prove that G♦ = R�. Let F ∈ Fi(A) such that (P, F̂ ) ∈ G♦. Then,

F ⊆ ♦−1(P ), i.e., for all a ∈ F, ¬�(¬a) ∈ P . So, �(¬a) /∈ P , i.e., ¬a /∈ �−1(P ). Thus,

�−1(P ) ∩ IF = ∅ and (P, α(IF )) ∈ R�. By remark, F̂ = α(IF ). The proof of other

inclusion is similar.

The other equality is proved analogously. �
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